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Propagation of high-frequency electrornagnetic waves 
through a magnetized plasma in curved space-time. 
1I.T Application of the asymptotic approximation 

BY R. A. B R E U E RA N D  J .  E H L E R S  

1lla.r-Planck-institut fur Physik und Astrophysik, 
Fol-lringer Ring 6, 0 - 8  ilfiinchen 40, F.R.G. 

(Commu?zicated by R. Penrose, F.R.S.- Received 12 1980) 

This is tile second of two papers on the propagation of high-frequency 
electromagnetic waves through an inhomogeneous, non-stationary plasma 
in curved space-time. By applying the general two-scale W.K.B. 
method developed in part I to the basic wave equation, derived also in 
that  paper, tve here obtain the dispersion relation, the rays, the polariza- 
tion states and the transport laws for the amplitudes of these waves. In  
an  unmagnetized plasma the transport preserves the helicity and the 
eccentricity of the polarization state along each ray: the axes of the 
polarization ellipse rotate along a ray, relative to quasiparallely displaced 
directions, a t  a rate determined by the vorticity of the electron fluid; and 
the norm of the amplitude changes according to a conservation law which 
can be interpreted as the constancy of the number of cluasiphotons. In a 
magnetized plasma the polarization state chaiiges differently for ordinary 
and extraordinary waves, according to the angle between the wave-
llorinal and the background ii~agnetic field, and under specified approxi- 
mation conditions the direction of polarization of linearly polarized waves 
undergoes a generalized Faraday rotation. 

1. INTRODUCTION 
The observed phenonlenon of X-rays emanating from matter which accretes onto 
neutron stars within cornpact binary systems has posed the problem of electro- 
magnetic high-frequency waves propagating through the magnetosphere of the 
neutron star which is filled with the accreting plasma (JIBszbros 1978) or a self-
magnetized accretion disk around a black hole (316szhros et nl. 1977).Similar pro- 
cesses will occur in other more catastrophic events, for example those in the early 
universe just before decoupling time, in quasars if we assume an accretion scenario 
around a super-massive black hole. and also in the late stage of a collapsing star. 
There, in fact, the production and dispersion of gravitational waves may also play 
an  important role. 

In  this second paper on the propagation of electromagnetic waves through a 
magnetized plasma in some arbitrary space-time we will not deal with gravitational 

t Part I appeared In Proc.  R.Soc.  Lonrl. A 370, 389-406 (1980). 
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radiation; however, we consider the results of this paper also as a preparatory cal- 
culation for the analysis of the interaction of gravitational waves with dissipative 
matter. Previous attempts to deal with this topic and the topic of this paper 
(Jladore 1974;BiE&k& Hadrava 1975;Anile & Pantano 1977, 1979) seem to us to  
be incomplete. 

Our aim is to apply the general methods developed in Breuer & Ehlers (1980, 
henceforth referred to as paper I) to the fundamental perturbation equation de- 
rived there. We here give a brief summary of this derivation. 

Let (M,gab) be a space-time populated with a cold, pressure-free, two-component 
plasma. The number density and four velocity of the electrons are denoted by n 
and u a ;J a  denotes the ion-current density. If e and m are the charge and mass of 
the electron and Fab is the electromagnetic field, we consider the following back-
ground system of differential equations: 

ubVbua= ( e l m )  Fabub;  

Va(nua)= 0 ;  

Small perturbations pa,, h and Ga of the background system obey the following 
perturbed system of equations: 

* 

V [ a F b o l  = O; ( I . 6 ]  

V ,p a b  = e(hua+n a a ); (1.7) 

ubVbha+ abVbua= ( e l m )  (Fabab +pabu b ); (1.8) 

V,(fiua+naa)= 0 ;  (1.9) 

By projecting (1.7)parallel to ua and orthogonal to the tangent rest-space of ua 
by hab:= Sab+uaub,the unknowns f i ,  2a can be eliminated from (1.7): 

A 

efi = -u,VbFab, (1.11) 

enaa = hab VcPbc.  (1.12) 

Introducing the electromagnetic four-potential of the perturbation, Â ,, via 
Pa, = Z V ~ , A ^ , ~  and imposing the Landau gauge condition uaAa = 0, we have 
shown in paper I that (1.6)-(1.10)are equivalent to the fundamental equation 
governing the perturbations : 

* 
DabAb: = {hacudVd(Vbc-Sbc Ve,) + (wac+wLac+Oat +Ohac+ 

+ ( e l m )  EauC) (Ohc -SbcVe,)+w:, habudVd +wi(8ab-gab))Â * = 0.  (1.13) 
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This is a constraint-free homogeneous linear system of three ~artial~differential 
equations of order three for the three unknown spatial conlponents of A". In  (1 .13)  
we used the notation 

Ea:= Pabub, Ba6: = henh'EbFccf, 
wLab  : = ( -e l m )Bab, wLa : = - $rabciEU b LC(!, 

w L :  = ( w L  w,:  = (ne2/n7)*, (1 .14)  

Vbua= w a b  +@ab-ubucTCua, 8:= Haa = Taua,  
(,Jab = - I
Wba,  ' a b  = @ba. 

I n  paper I we proved existence, uniqueness and linearization stability of solutions 
of the Cauchy problem for the bacliground system and the perturbed systeni. I n  
addition we adapted the 1Y.K.B. method for the construction of oscillatory 
asymptotic solutions to systems such as (1 .13)  and stated a sufficient condition 
for asymptotic solutions of finite order to be, in fact, approximate solutions of the 
respective systems. By these theorems the approximation scheme to follow has 
been put on a firrn basis. 

In  this paper we shall apply the method to (1 .13)and thus study the propagation 
of high-frequency electromagnetic waves through plasmas embedded in (possibly) 
strong gravitational fields, emphasizing those properties which arise from inhomo- 
geneities of the plasma and the background electromagnetic and gravitational fields. 

The plan of this paper is as follows. I n  4 2 the two-timing method is employed to  
reformulate (1.13) . I n  $ 3 we study in detail the rays associated with the ordinary 
and extraordinary waves, and the phase-propagation along them. I n  $4we deter- 
mine the polarization states of these waves. Then, in 4 5 ,  we set up the transport 
equations for the lowest-order amplitudes of the waves and consider their implica- 
tions for the propagation of polarization states and wave intensities. I n  particular, 
we generalize the elementary treatment of Faraday rotation to non-stationary, 
inhomogeneous backgrounds. JT7e summarize our results and state some problems 
in the final § 6. Appendix A deals with the role of gauge conditions in asymptotic 
expansions, and in Appendix B we define a quasiparallel transport of vectors 
which is needed to interpret the transport of polarization vectors along rays in 
curved space-times. The notation is as in paper I and follows Misner et al. (1973). 

2 .  A T W O - S C A L E  M E T H O D  

According to a theorem of paper I, the perturbation equation (1 .13)  has, in 
particular, solutions which are approximately plane and monochromatic on a 
scale h much smaller than the one, say L,on which the background quantities vary; 
appropriate initial conditions determine such waves. By means of the method 
described in paper I, $ 4  it  should be possible to approximate such short-wave 
solutions by asymptotic series, provided the small scale-ratio c :  = A I L  is intro- 
duced into (1.13)  suitably. 
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To introduce the background scale L we assume that  the connection coefficients 
T(O(b)(c) used in relation to (1.13)) associated with the orthonormal tetrad field E(a,b 
defined by 

' E , ~ )E(b) = r(C)(b)(cc) E(c), (a.1] 

are a t  most of the order of magnitude L-l, and that  the directional derivatives of 
low order? of the tetrad components of the background fields are a t  most of the 
order of magnitude L-l times the field components themselves. Clearly, L is the 
scale on which the background fields change. I n  astrophysical applications L will 
be a 'large' length like a stellar radius. (Examples: In  a Schwarzschild space-time 
filled with a stationary test fluid, L can be chosen to be the Schwarzschild radius, 
provided the domain considered excludes a neighbourhood of the absolute event 
horizon. For a not-too-large part of a Friedmann-Robertson-Walker space-time 
filled with the standard cosmological fluid, L can be chosen to be of the order of the 
Hubble age of that  domain.) 

We define the 'dimensionless covariant directional derivative' operators 

These operators do not change the physical dimensions of the fields on which they 
act, and if Cb is a slowly varying quantity, then (by assumption) 

(Here and in the sequel we no longer ornate tetrad-indices by brackets.) 
Our assumptions and (1.3) and (1.14) imply that  

where all symbols with an underzero denote dimensionless, slowly varying func- 
tions of (at  most) order unity. 

I n  terms of the dimensionless operators (2.2) and coefficient functions wab etc. 
0 

the perturbation equation (1.13) reads, i f h  denotes n - a t  this stage still arbitrary -
length, and e := AIL: 

( [ e 3 ( h a c ~ d ~ d  -Sb,Dee]+Oac +Ohac+wac + (elm) Eauc) +e2hwLac] [Dbc 
0 0 0 00 0 0 0 

+eh2w;(habudDd+Oab -uab ))Ahb=O. (2.5)
0 0 0 0 

As mentioned previously, ( 2 . 5 )is a special case of (4.1) of paper I for p = 3, nz = 3, 
and n = 4. We have written hab, ua instead of hab, ua to  emphazise that  all quantities 

0 0 

with an underzero are slowly variable and a t  most of order one. 

t Precise assumptions of this kind would be required if errors were to  be estimated. 
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We now specialize the perturbations to locally approximately plane, mono- 
chromatic waves, choose h to be of the order of the wavelength, and assume 
s : = AIL < 1. I n  accordance with this assumption we put  

with 

The amplitudes 2,have to be chosen so small that  the linear approximation dis- 
n 

cussed in paper I is valid. 
The method of paper I, 5 4 can be applied to (2.5) in two distinct ways: 
(a) One considers the background scale L as fixed and takes the limit h + 0. 

I n  this case i t  is reasonable to put  

and to treat LwLab, LwP as &-independent, bounded functions like the other coeffi- 
cients of the operator in (2.5). All terms of (2 .5) then contain the factor c3 which 
therefore can be dropped. I n  this case i t  is convenient to choose L as the unit of 
length, L = 1,so that  s = A .  

(b )  One chooses a fixed wavelength scale h and talies L -t x.Then i t  is reason- 
able to consider hwLab and hw, as bounded, e-independent coefficients in (2.5). 
The operator then contains different powers of s. I n  this case i t  is convenient t o  
take h as the unit of length, h = 1, so that  L-l = e ,  and to work mith D,. 

Both methods are based on the smallness of the scale-ratio &, and both use the 
concepts of geometrical optics - rays and phase-hypersurfaces (w-avefronts) - as the 
tools by means of which approximate periodic waves are constructed. The difference 
between the two methods resides in their domains of validity: In  version (a) one 
approximates the ware in a given domain with a fixed inhomogeneity such that  
the error decreases mith decreasing wavelength. In  version (b)  one keeps a specified 
wavelength range and improves the approximation by shifting the space-time 
domain towards regions of smaller inhomogeneity. I n  accordance with this, in (b)  
the influence of matter on the w78re (for example, dispersion) is taken into account 
already in the lowest approximation. This is not the case in version (a). 

I n  reality the values of L ,  A ,  wab etc. are, of course, given numerically by the 
physics; the 'limit process' 6 -t 0 is a formal device only. I n  order that  the formal 
order-of-magnitude assignment corresponds roughly to the actual numerical values, 
one has to have (mith w, : = ($wabwab)):) 

wL - (L), L ( ! J ~ ~  for case (a),  
wL - (L lh )w, - hwD2 for case (b),  

i.e. the numbers will determine whether method (a)or ( b )  is more appropriate. A 
rigorous comparison of the methods requires error estimates which, unfortunately, 
appear to be unknown for most cases of physical interest. 
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Since we use the model of an 'electron fluid' we have to restrict h by 


For this reason and since we are interested in dispersion effects we shall henceforth 
use method (b), and accordingly simplify the notation by putting h = 1. Then in 
(2.6) the phase e-IS' varies rapidly, on the scale 1, whereas the wave-covector 

the frequency 

with respect to the electron background, and the amplitude x,"=, vary(s/i)nA, 
n 

slowly, on the scale L,  provided unD,S is of order one and the D,DbS and D,& 
n 

are a t  most of order one. These latter conditions can be satisfied partly by the choice 
of initial conditions, and partly they determine the domain in which the approxi- 
mation is valid. 

Having obtained (2.5) and decided to use alternative (b) ,  we can now apply the 
method of paper I, $2. There is one formal difference, however: in (2.5) the co- 
variant derivative operators D, do not commute and, if written in coordinate 
language, contain first-order and zero-order terms. Nevertheless, i t  is easy to  
check that  the method generalizes without any substantial change to the case 
where the a, = a/axa are replaced by D, as defined in (2.2). I n  fact, the local 
theory can be globalized and reformulated in invariant, geometric language 
(Duistermaat 1974). I n  particular, it does not matter whether one uses, in T,M ,  
canonical coordinates (xu,1,) or any other coordinates. 

For the lowest-order steps, the ordering of the operators D,, which in general is 
relevant because of curvature, does not matter. This is obvious from (2.5) and (2.6): 
in zero order no derivatives are involved, in first order only one derivative appears. 
Hence for the first two steps one could equally well work in flat space-time and 
later use the principle of 'minimal coupling ', replacing partial by covariant deriva- 
tives, thus obtaining the same results. Only for the third and higher-order steps is 
the curved-space treatment necessary to  obtain the correct forms of the functions 
appearing as 'source terms' in the transport equations. 

We note how one obtains the electric and magnetic fields from the potential. By 
(3.11) of paper I and (2.2) the perturbed field Pubis 

Pab= 2 Re {VI, A ,̂]) = 2L-I Re {Dl, ifb1) 
= 2e Re {D,, A ,̂]}. (2.11) 

The asymptotic expansion (2.6) together with (2.9) then implies 

Hence we get for the electric field Pa,ub in lowest order 

fin = Re {iw e('/GS Â ,), 
a o 
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i.e. i d ,  is the complex amplitude pf the lowest-order electric field of the wave. 
Correspondingly, the magnetic field is given by 

I n  Appendix A i t  is shown that  if the field strength admits an asymptotic 
expansion analogous to (2 .6) , then because of (1.6) there exists a potential of the 
form (2.6) which obeys the Landau gauge condition (2.7), and for given P,, and X 
the amplitudes Â, are then uniquely determined, in accordance with the preceding 

n 

remark about iwA ,̂. 
0 

3. DISPERSIONR E L A T I O N ,  E I C O N A L  E Q U A T I O N  A N D  R A Y S  

We now apply the two-scale method to (2.5), using version (b)  of § 2 - following 
closely the exposition of the method of paper I, $4 .  We insert the asymptotic 
expansion (2.6) and take, formally, the limit t. + 0, which yields 

Labdb= :{(whac+ iwLa,) (12hcb -kckb)+ww2p hub) db= 0, (3.1)
0 0 0 


where k, = hab lb 

is the wave three-vector in the local rest frames of the background plasma, so that  

la = ka +wua, l2= k2-(2. (3.2) 
I n  (3.1), and subsequently, we drop the caret on the potential A,. 

Equation (3.1) is a linear homogeneous pola~ixation condition for the lowest-order 
amplitude. Henceforth, we always restrict our attention to the cases where k f 0, 
w # 0 and (d2 # w i .  To simplify the polarization condition we decompose A, into 

0 


longitudinal and transverse parts with respect to the wave two-surfaces, by intro- 
ducing the unit normal vector na and the transverse projector pab: 

The ' longitudinal part ' of (3. I )  then gives 

After elimination of A ,  via (3.5), from (3. I ) ,  the 'transverse par t '  of (3.1), obtained 
0 


by projecting with paa,reads 
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where I 

wLab := pac(dLCdpdb. 

Kote that  in contrast to  the effectively 3 x 3, matrix Lab in (3.1), the, effectively 
1 (1 

2 x 2, matrix Lab is Hermitian. 
0 

Dispersion relation 

Except for the factor w corresponding to a zero-frequency mode, the dispersion 
relation implied by (3.1) is identical to the one belonging to (3.6): 

where the Larmor-frequency vector (dLa or o was defined in (1.14). (We sometimes 
write oLto  emphasise %hat it  is a three-vector in the rest frame of the electron 
fluid, just like k . )  

Equation (3.8) is the standard dispersion relation for a magnetized plasma (see, 
for example, Stix 1962).I n  accordance with a remark made above, i t  is unaffected 
by curvature or inhomogeneities of the background. (Heintzmann & Schriifer 
(1977)have derived a dispersion relation for a cold plasma which differs from (3.8) 
by a term containing the fluid's vorticity. That term occurs since the authors 
assumed the vorticity to be of order A- l ,  rather than of order L-las we have assumed; 
compare our discussion in the previous section.) 

If the definitions 
w = -uaDaS, k, = hUbD,S 

are inserted into (3.8), the eiconal equation for S is obtained - in this case a first- 
order partial differential equation of degree eight. Equation (3.8) shows that  if S 
is a solution then so is -S. We shall, therefore, without loss of generality, always 
take w > 0, as usual. 

I n  the absence of a magnetic field and except a t  the plasma frequency (3.8) 
reduces to the well known dispersion relation 

for phenomenological photons. 
Restricting attention to  frequencies such that  (d2 > w: +w i ,  and introducing the 

angle a between the magnetic field and the wavenormal, 

we solve the dispersion relation (3.8) for k2, obtaining 

(k2)+= w2-m i  +w;(wL/w) F+((dL/w, a ) ,  (3.11) 
where 
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For a given, non-vanishing magnetic field o, and wavenormal n ,  there are thus 
two propagating modes, which arc called the ordinary icave (upper sign in (3.1I ) ,  
(3 .12) and subsequent equations) and the extraordinary 2caz.e (lower sign), respec- 
tively. Each characteristic strip and each eiconal X belong to exactly one of these 
modes. Henceforth, k+ and k- denote the functions of o and n defined by (3 .11)  
and (3.12).Alternatively, one may consider w+ and (d - as functions of k. 

From now on we shall be concerned with high-frequency waves on13 7 , 1.e.' 

and we shall write ' z' to  indicate approximations in which only the dominant 
terms in the small variables cdp/w, wL /w  are retained. (We do not restrict the rela- 
tive magnitudes of w,  and wL.) Then, from (3 .12 ) ,  

These functions depend strongly on a and obey lFij,$ 1. 
The three terms in (3 .11)  satisfy, under the condition (3 .13 ) , the inequality 

w2 + (L): 9 ( L ) ; ( w ~ / w )F*. The vacuum term dominates the isotropic plasma term 
which, in turn, is larger than the anisotropic magnetic contribution. 

It is essential that  the approximation (3 .14)  holds uniformly for all angles a 
since in curved space-times or in an inhomogeneous plasma there are no plane 
waves, and in general the angle a will not be constant for a solution of the eiconal 
equation. In  fact, for some astrophysical field configurations a varies over the full 
range 0 < a < .n along a single ray. (See, for example, figure 3 . )  A linearization of 
F* with respect to w,/w is not possible uniformly in a.  

From (3 .11)and (3 .14)we obtain the p i~ase  velocities 

and, equivalently, the indices of refraction 7z+ = v;l of the two waves. Note that  

(UP)+> (up) - .  

R a y s  

Next we determine the rays along which the amplitudes are transported. Accord- 
ing to $ 4  of paper I the Hanliltonian H ( z a ,I,) ,  governing the characteristic strips 
from which the solutions of the eiconal equation can be constructeci, can be taken 
to  be the left-hand side of (3 .8 )with w = -u U ( x )I,, and k 2  = ka"x) Za1, inserted. If 
S is an eiconal, H(.xU,S ,) = 0, then the associated rays are the integral curves of 
the transport rector fieid Tu= Z H ( z 5  SS , ) / l l , .  

To calculate T awe introduce, for given background fields ua,w?,, an orthonormal 
frame field E(,, with Eye) = Z L ~and E& = W L ~ W ? , .K i t h  respect to its dual co-basis 
E(lL),the TF-ax-e-cox-ector has the components I,, = ( -w,  k,, k,, k,). Computing 
c?H/c?l, from (3 .8 )and inserting the approximate solutions (3 .11)and (3 .14)of the 
dispersion relation we get 

5"': zz sin4all-- $ ( c ~ ~ ~ / w ) ~  (3 .16 )4wy, w,, w3{ + 1z[cos2a + i ( ( d T , / ~ ) 2  w:, cos a). 
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The transport vectors are thus almost collinear with 1;. The 'correction' in the 
direction of the magnetic field vanishes if a = and is always smaller than the 
leading term by a factor of order wL wB/w2. 

The spatial ray-velocities relative to the unperturbed plasma, which equal the 
group velocities, are given by v,h = Th/TO, i.e. according to  (3.16), by 

Decomposing oLinto longitudinal and transverse parts, and using (3.14), one finds 

sin a cos a 0: 

(vg)* ( 1 - ~ ) n ' [ c o s 2 a + a ( o L / w ) 2 s i n 4 a l ~ ~  @)L' (3.17) 

where terms of order ( w , / ~ ) ~  have been neglected. The rays are, therefore, ( ~ ~ / o ) ~  
not exactly orthogonal to the wave-surfaces, except for a = 0 and a = i n ;  and to  
within the specified accuracy the magnitudes of the two ray velocities, 

are direction-independent and equal to the ray speed in a n  unmagnetixed plasma, in 
contrast to the phase speeds (3.15). 

Equation (3.17) gives the ray velocities for both modes as functions of frequency 
and wavenormal. Inversion gives, to the same accuracy, t'he dependence of the two 
possible wavenormals on frequency and ray velocity: 

sin a cos ~1 

[cos2a + ~ ( W ~ / W ) ~  
(3.19)sin4a]:2w2 

I n  this equation a may be identified with the angle between the magnetic field and 
the ray, and may be taken to refer to the plane orthogonal to the ray. 

The preceding results show that  for high frequencies, ordinary and extraordinary 
zcaves propagate approxinzately along the same rays zcith diflerent phase speeds. This 
fact is essential for the phenomenon of Faraday rotation to be discussed subse- 
quently. 

Let a ray xa(t) be parametrized such that u,ga = - 1. (This equation means tha t  
t coincides with proper time measured by clocks cornoving with the unperturbed 
plasma, Einstein-synchronized along the ray.) Suppose that  an  ordinary and an  
extraordinary wave both travel along that ray. Then the rates of change of their 
respective phases along the ray are 

€-IS* = iae-lVaS* 

or, because of (2.9) and (3.2),  

( ~ " + ~ ; ) l , f  -w+(k.vg)*.= 

We define the Faraday rotation rate w, by 

O)F : = &-'(S--X+) = i ( ( k .  vg)- - (k.vg)+] 
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and obtain from (3.1 I),  (3.14), and (3.17) 

which reduces in the most frequent case cos2a9 i(wL/w)2sin'a to the standard 
formula 

o, a ((o; wL/2w2)/ cos a ] .  (3.21) 

The interpretation of this angular velocity under the general circumstances con- 
sidered here will be discussed in $ 5 .  

As the preceding considerations indicate, one can calculate the rays in a magnetic 
plasma very precisely by neglecting the magnetic terms in the canonical equations, 
and afterwards apply (3.20) to compute the Faraday rotation. 

We end this section with some remarks about the rays in an  unmagnetizedplasnza. 
Then one can take the Hamiltonian 

to calculate the characteristic strips and the rays, using the canonical equations 
together with the constraint E l  = 0. ( I t  must be remembered that any function 
H(za, lb), such that H = 0 gives the dispersion relation, and 2H/21a does not vanish 
on H = 0, can be used as a Hamiltonian.) The form (3.22) of H shows that the rays 
are the timelike geodesics associated with the metric w i  gab, inverse to w ~ ~ g a ~ ,  conformal 
to  the basic space-time metric; they are thus also characterized by the (parameter- 
independent) variational principle 

Another possibility is to choose the Hamiltonian H '  = +(gubl,lb+w;) and to pass 
to a Langrian by Legendre transformation. One obtains 

to  be combined with the constraint g,,kax" - w ; .  This method covers also the 
vacuum case which is excluded, of course, in (3.23). 

It is easy to derive, for a stationary space-time occupied by a stationary back- 
ground plasma the worldlines of which are the timelike Killing orbits, a Ferrnat 
principle (Pham Mau Quan 19j9, Synge 1964). If this principle is applied, for 
example, to the deflexion of radar waves by the combined influence of the Sun's 
corona and gravitational field, one recognizes that the total effective index of 
refraction is the product of that  due to the plasma and that due to the gravitational 
field. The latter is given, in lowest weak-field approximation, by 

71grav = 1- 2 x (Sewtonian potential). 

(see, for example, Fock 1960.) More details and generalizations to magnetized plas- 
mas will he published separately. 
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FIGURE1. The space part of the adapted orthonormal frame. 

If there is no magnetic $eld (3.9) holds, and because of (3.5) the longitudinal 
component of the potential vanishes in lowest order, A, ,  = 0. Then (3.6) implies 

li
L 

that  La, = 0, i.e. the polarization sta,tes a t  an  event xa and for a given wave vector 
0 

1, form a two-dimensional complex Hilbert space eF(x,1 )  := {Aa( ua Aa = 0, 
0 0 

1,Aa = 0) with the inner product (A, B) := J a B a ,  as in vacuum, although the 
0 0 0 0 0 

rays are timelike. TT7e shall show in the next section that  any such state is pre- 
served along a ray, i.e. the maps between these spaces 2 (x, I) which are defined by 
the transport equation are unitary except for a positive scale factor. 

To discuss the polarizatio~z states when there is a magneticJield i t  is useful to work 
with an orthonormal frame adapted to the background plasma, the background 
magnetic field o, and a wave direction n as  shown in figure 1. (If sin a = 0, E(,, and 
E(,, are taken to  be an arbitrary orthonormal pair orthogonal to zca and na, except 
that  the tetrad field Eb(,,is assumed smooth everywhere.) With respect to this 
frame the spatial components of the tensors appearing in the polarization condition 
(3.6) are as  follows: 

k = (0,0,k ) ,OL = sina, cosa), ~ ~ ( 0 ,  (4.1) 

s ina  0 0 0 0 0 


(a, A n)i = -uLiana= w,(sin a ,  0,0),  (4.2) 




i 

Wave propagation in plasmas in curued space-time. I I  77 

(L)*= ( -w )  
( ~ 2-w:) (k: -w2 +w:) - (k i-w2)W; sin x2, i(w2-w2,) (k: -w2)Io - i ( ~ 2 -w;) (k: -w2) (wL/w) cosa, (w2-w i )  (kt-w 2 + w i )  

(4.3) 
In  (4.3) k* are the values given exactly in (3.11) and approximately in (3.14). 

Since the matrices given in (4.3) have rank one for each mode, the zero-order, 
L 

transverse amplitudes ALaare determined, by the polarization condition La, ALb=0 ,  
0 0 0 

uniquely up to a scalar factor; the modes are non-degenerate. One obtains by means 
of (4.3) and (3.11) 

and in the special case n _L w, for the extraordinary wave 

The longitudinal component of A a  is determined by the transverse components, 
0 

via (3.5), which in adapted components gives 

-sin a(Al)+ 
0 iJ 

Thus for high frequencies the amplitude is always very nearly transverse, as is 
well known. 

The information contained in (4.4), (4.5) and (3.14) is summarized in figure 2. 
As figure 2 and (4.4) show, the waves are almost circularl~ polarized except for 

the very narrow range of angles given by cos2 a < (wk/4w2) sin4a, i.e. n nearly 
orthogonal to wL, in which there is elliptic and, for n,  w,, linear polarization. It is 
nevertheless important to have approximations valid for all angles since a may 
vary along a single ray over the full range 0 < a < n ,  so that the sequence of states 
indicated in the figure, with a change from right- to left-circular polarization, for 
example, is realized along one ray. 

5. TRANSPORT F O R  A M P L I T U D E SL A W S  T H E  

Each solution of the dispersion relation (3.8) specifies a class of polarization states 
via (3.5) and (3.6). The data needed to determine a particular amplitude Aa, 

within this class, along a ray can be chosen arbitrarily a t  one point of the ray; 
they are then determined all along the ray by the transport equation correspo~~ding 
to the dispersion branch considered. 

0 
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\iravenormal 
and lnagnet~c fieid '3121 

Ell, 

extraordinary wave 

FIGURE2. Dependence of the polarization state, i.e. the ossillation pattern of' the electric 
field E ,  on the angle r bet~veentho wavevector k 1 1  n = E ,  and tho background magnetic 
field o, for higll-frequency waves ((2 w i  + w;) .  The ordinary (extraordinary) wave is 
characterized by the property that E rotates in the same (opposite) sense in which 
positively charged particles gyrate. The ray direction is contained in the E(L,,E,,,-plane 
and very close to the \r-arenormal n. The polarization coefficient iA,/A,, the modulus 

0 0 

of which is the ratio of tlie axes of tlie polarization ellipse (see, for example, Ginzburg 
1964, Breuer r g ? ~ ) ,can be read off from (4.4). The helicity of the wave is denoted by h.  
Tlie phase speed of the ordinary wave is larger than the one of the extraordinary wave. 

FIGURE3.  Variation of polarization state n i th  changing relative orientation of ray and 
magnetic field directions Along a ray, the state of polarization may vary from right- 
circular (near (A))via hnear (at B) to lrft-circular (near C') polarization. 
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The transport equations for the lowest-order amplitudes result from the terms 
of order t. of (2.5), once the expansion (2.6) has been inserted. These terms give 

where La"s the tensor defined in (3.1) and L ~ q s  the following first-order differential 
0 1 

operator: 
La" 2(cdhab+ icoLab) (Dl +8)+ (kukb- [ 1 2  + (of,] hub) D,, 
1 0 

+ (haCDlllc+ [(oar+Hac] kc +Hka-o(e/m)Ea)lib. (5.2)
0 0 0 0 

Here we have put 

The other symbols in (5.2) have been defined in the introduction and in § 2. (Symbols 
like D,kQenote functions, not differential operators.) 

We first consider an z~nmagnetized plasma, coL = 0. Then An is transverse, 
0 


Z 2 +  u i  = 0,  and Lab = -ukakb, whence (5.1) implies pa,Lk"rlL,= 0. To obtain this 
0 1 0 

equation explicitly we use (5.2) and the consequence Dl, (0: = -w!, 0 of the electron- 
0 

number conservation law. This gives the transport late 

(pab(G,+8 )+ (o;Jo) 
I 
oa,) A." = 0, (5.4)

0 

in which we have used the original expressions 'Tl ,(dL,and 8 : = tGaln instead of 
their dimensionless counterparts Dl, wab and 8. The derivative in (5.4) acts in the 

0 0 

ray direction la, as expected. 
Equation (5.4) defines a vector-space isomorphisn~ from the space dipof trans- 

verse amplitudes at p onto that  at q ,  Xg,for any t n o  events p ,  q on a ray. This 
isomorphism maps real vectors into real ones. The Hilbert inner product (A, B)  

0 0 

(defined in 5 4) of two solutions of (5.4) changes along a ray according to the con- 
servation law 

('TI+28) (A, B) = 'T,,((d,B) I(') = 0, 
0 0 0 0 

and the same equation holds for the Euclidean inner product dl. By. Hence, the 
0 0 

isomorphism from 2, to Xois unitary or orthogonal, respectively, up to a positive 
factor, with respect to these inner products. These facts imply that the transpo~.t 
preserves linpar, circular, elliptic polalization, helicit?! and ellipticity. 



80 R. A. Breuer and J. Ehlers 

Equation (5.5) implies in particular 

for the Hilbert norm lIAIJ of illa.This equation can be interpreted as the law of 
0 0 

conservation of a quasiphoton number, for according to (2.13) 11 A11 is related to the 
-n 

time average of the squared electric field of the wave by E, Ea = $w211A[/  2, whence 
0 0 0 

one may consider $wllAll2 as the quasiphoton number density in the electron 
0 

fluid's rest frame (except for the factor &-I), &w,llA1I2 as the proper number density 
0 

of the quasiphoton stream, and Na = &11A1I2la as the quasiphoton four-current 
0 

density. Equation (5.6) gives a simple and useful relation if integrated over a 
narrow bundle of rays. It is also easy to combine (5.6) with the equation of motion 
for the quasi-photon four-momentum la derived in $ 3  and thus to obtain the 
formal energy-momentum conservation law: 

0 

where denotes the covariant derivative associated with the 'plasma metric' 
gab:= w; gab considered previously. 

To interpret the transport of directions implied by (5.4) we introduce a real, 
orthonormal, quasiparallel basis of transverse vectors along a ray. (For the defini- 
tion and properties of quasiparallel transport see Appendix B.)We then find that  
the direction of a real solution ALa of (5.4) rotates, relative to quasiparallel axes 

0 

and with respect to electron proper time, with the angular velocity - (o*/w)~u e n .  
Here, : = +yab,,naubwca is the component of the vorticity of the electron fluid 
in the ray direction. (This rotation is counter-clockwise if one looks in the direction 
n of the wave, provided w e  > 0.) 

Once (5.4) has been solved (5.1) determines A ,  the longitudinal component of 
1 

the first-order-amplitude Aa. This, then, exhausts the information contained in 
the first approximation. 1 

I n  the case of a nzagnetized plasmu the  matrix Lab, restricted to one of the two 
0 

high-frequency modes, has rank 2 as was shown in § 3. Multiplication of (5.1) with 
a left null vector N, (which is unique up to a factor of Lab) gives 

0 
NaLabAb= 0. (5.8)

1 0 

A\ can be decomposed like A, as Na = N,, +q!n,;  
0 

one finds (u2-w:) 8 = iwwLabnaNLb 

and I 

N,, Lab = 0. 
0 
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Let (R,a)* be arbitrary, but fixed, non-vanishing solutiolls of the polarization 
.L L 


conditions LabR,b = 0 for the two modes. Since LaVs Hermitian we can and shall 
0 0 

satisfy (5.10) by taking -
= R

I 
" (5 .I I )  

(the bar denotes complex conjugate). The general amplitudes are then 

and the complex scalars v i  have to obey the transport equations 

in which nre have suppressed the irldices 5 . The general theory of paper I guarantees 
that  the derivative operators (,1',RbLu" act in the ray directions Ta considered in 

1 


3 3. 
The explicit, exact equations (5 13) -found by taking the Rha from (4.4) and 

(4.5), R from (4.6), A:a from (5.11) and iylfrom (5.9) and inserting into ( 5 . 2 )-
are lengthy and do not seem enlightening; therefore we shall not display them. 
Instead, we only write down that  approximate version of (5.13) in which all terms 
involving the small parameter wL/w  are neglected. I t  is equivalent to 

For amplitudes corresponding to (nearly) circular polarization this equation con- 
tains, not surprisingly, the same information as (5.4). Thus if in the case w ,  # 0, 
those short and rare parts of rays where the waves are not nearly circularly polarized 
(i.e. where n is perpendicular to o,) are excludecl, the amplitudes propagate 
approximately according to the law (3.4). If this result is combined with the ana- 
logous statement concerning rays, the following conclusion emerges: 

I n  a magnetized plasma and for high frequencies (w2$ w:, + (dk)  the ordinary 
and the extraordinary waves have rays which are approximately timelike geodesics 
of g,, = w;g,,, and their circularly polarized amplitudes are transported approxi- 
mately according to (5.4). The phases of the ordinary and extraordinary waves, 
however, change differently along the rays, according to (3.20). 

This statement permits us to generalize the theory of Faraduy rotation to an 
inhomogeneous plasma in curved space-time. If a wave enters a magnetized region 
of a plasma linearly polarized i t  leaves that  region again linearly polarized. Hour- 
ever, owing to the different phase speeds of its circularly polarized components in 
the intervening region and possibly because of the rotation of the electron fluid, the 
direction of polarization will have changed, relative to quasiparallely transported 
axes (see Appendix B),by the angle 
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where the int'egral is to be taken along the ray, and t denotes electron proper time 
( $ 3 ) . (The first part, which usually dominates, corresponds to a clockwise rotation 
if one looks in the ray direction n,and w L  > 0.)This description of Faraday rotation 
is valid only as long as the exact rays belonging to the ordinary and the extra- 
ordinary waves, respectively, deviate by less than the coherence length of the 
radiation. Only then can t'he left- and right-circularly polarized components super- 
pose again when leaving the magnetized plasma. Relativistic (Doppler and gravi- 
tat'ional) frequency changes along a ray are, of course, included in (5.15);but i t  
must be remembered that t refers to the plasma, not to an arbitrarily moving 
observer. The special case of rays along which the helicity switches (see figure 3) 
will not be t'reat'ed here, although the tools for studying this case have been pro- 
vided. In  principle, though hardly in practice, one could extend the approximation 
to higher order in c. 

6. ~ I T M M A R YA N D  D I S C U S S I O N  

In  this and the preceding paper (Breuer & Ehlers 1980) we have treated the 
propagation of high-frequency electromagnetic waves through an inhomogeneous, 
in general non-stationary. moving plasma in a general, curved space-time by means 
of a J.W.K.B. method adapted to this purpose. The aim was to provide a formal 
approximation scheme applicable also to similar wave propagation problems and 
to justify it mathematically. To do this we have kept the plasma model as simple 
as possible and have focused our attention on the essential mathematical structure 
and its physical meaning. More complicated, and therefore more realistic, models 
could, however, be included without major difficulties. (For example, a pressure 
could be taken into account. In fact, some of the basic arguments become simpler 
in that case than in the 'degenerate' pressure-free model since the corresponding 
system of differential equations is then symmetric-hyperbolic in the sense of 
Friedrichs. The equations, however, become formally even more complicated than 
they are without a pressure.) 

For a two-component, cold (pressureless) plasma we have shown that the Cauchy 
problem for the magnetohydrodynamic system of differential equations on an 
arbitrary space-time possesses locally a unique solution for appropriate initial 
data. Also, this system was shown to be linearization stable a t  any of its solutions. 

These properties of the basic equations imply that the associated evolution 
equations for linear perturbations also have unique solutions for initial data 
satisfying the linearly perturbed constraints. Because of the linearization stability 
of the original system, the sum of a background solution and an 'infinitesimal' 
perturbation indeed approximates a solution of the full system. Moreover, the 
wave equation for a suitably gauged four-potential of the electromagnetic field 
perturbation has locally unique solutions for unconstrained initial data, although 
i t  is not strictly hyperbolic. 

We can assert that the nth-order field, computed by means of the approximation 
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algorithm applied to the perturbation equation, which is an asymptotic solution of 
order n in the small parameter F = wavelength of the perturbation-length scale 
of the background, actually approximates a solution provided the inverse of a 
certain differential operator (given in ( 1 . 1 3 )  of paper I )  is small in a certain sense. 
We have not established this property for the operator in question, 1:owever; this 
remains to be done. 

Using the two-scale perturbation scheme, we obtained the dispersion relation, 
the rays, the corresponding polarization states and the transport equations for 
high-frequency electron~agnetic waves, and by means cf them considered the 
appropriately generalized Faraday rotation. 

An important physical question not discussed in these papers concerns the 
applicability of the method to  high-frequency waves in low-density plasmas when 
the inequality n-Q< h does not hold. For densities of typical accretion gas, for 
example, the method appears to be justified up to optical frequencies (only). I t  
seems that  certain properties of X-rays emerging from accretion processes onto 
compact binaries - to  which the theory was aimed a t  initially - can still be ex- 
plained by means of a formalism IT-hich treats the plasma as a continuum even a t  
these wavelengths (see, for example, Chanan et nl. 1979), but a justification of this 
procedure, to our knowledge, is lacliing. 
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APPEKDIXA. G A U G EC O N D I T I O N S  A N D  A S Y M P T O T I C  E X P A N S I O N S  

It will be shown here that if a one-parameter family of complex, closed bivector 
fields, F(x,e),  d F  = 0, admits an asymptotic expansion 

then there exists a four-potential A(x, e), F = dA, which also admits an  expansion 

If U is a vector field which is nowhere tangent to the hypersurfaces S = constant, 
then A can be chosen to obey the Landau gauge condition 

(A, U )  = 0. (A 3) 

The corresponding amplitudes A which, of course, satisfy 
7L 


( A ,U )  = 0,  
n 

are then uniquely determined by F and S.Note that  these remarks do not require 
a metric or connection, or any field equations for F besides the 'homogeneous-half' 
of Max~vell's equation, d F  = 0. On the other hand, if there is a metric, then the 
possibility of imposing the Lorentz gauge condition 

on the potential (A 2)  depends on additional properties of S, F and F which we 
-1 

shall not discues exhaustively, since that  is not necessary for our purposes. We 
see a t  any rate that  the radistion gauge (A 3) is compatible with (A 2 ) , and can be 
satisfied trivially. 

To establish these claims, verify that  (A 1)and d F  = 0 imply 

Therefore, there exists A such that  F = d S A A. Hence 0 = dS A F+d F  = 
0 -1 0 0 -1 

d S A (F-dA),  whence there is an A such that  F dA +~ X A= A, etc. With the A so 
0 0 1 0 0 1 n 

chosen, form (A 2 ) . It is easily checked that  F = dA. This establishes the existence 
of an  A obeying (A 2 ) .  

The construction of the sequence (A) shows that  the following 'gauge trans- 
1L 


formations ' are permitted : 



Wave propagation i n  plasmas i n  curved space-time. 11 85 

where the A are arbitrary functions. This change corresponds to A -t A +dA, 
n 

where A e(i/E)Sxgm(~/i)n~.Obviously, if (dS,C )  # 0, then ( A3) or, equivalently, 
n 


(A 4) for all n can be satisfied by taking a suitable A, and the A are thereby uniquely 
n 

determined. 
Let us now turn to the Lorentz gauge, (A 5 ) .Equation (A 2 )  will satisfy i t  if and 

only if 
daS,,=O and d ~ S , , + V a A a= 0 ,  ? z =  1 , 2,... . (A 7 )
0 n n-1 


The left-hand sides of these equations change under a gauge transformation (A 6) 
by the terms 

AS,,Xta, A iaa+ '4 AS,,S1a, 
0 n - 2  n-1 11 

( A:= 0).Hence, if S,aX'a# 0,i.e. if the phase velocity is not 1, then one can satisfy 
-1 

( A7 )  by a unique choice of the A. Suppose, however, that = 0. Then Aai9,a 
n 0 

is gauge inrariant and vanishes exactly if F = dX A A is a null birector. If, in addi- 
- 1 0 

tion, S;aa=O - non-diverging rays - then also AaS,, +VaAa is gauge inrariant. 
0 

These remarks substantiate our claims. 

To interpret geometrically the transport of amplitudes along rays in curved 
space-times it is useful to define a quasiparallel transport of vectors along curves 
that preserves conditions such as pabAb= A", whic11 requires Aa to be contained 

0 0 0 

in a two-dimensional subspace of the tangent space. lye shall here define such a 
transport generally and then specialize it to the case needed in this paper. 

Let M be an n-manifold, V a linear connection on ,I[. Suppose u -t xa(u)repre-
sents a curve in ,I1 with tangent T a= xu.Jloreover, let TXcu= PA@ QAbe a direct 
decomposition of the tangent space at  xu(h)such that pubprojects onto PAalong 
Q,,, and gab projects onto Q, along PA,with pab.qabdepending smoothly on A.  Then 

and 

A vector Xa is contained in PAif and only if one of the ecluiralent equations 

paa Xb = X", gab X" 0 
holds. 
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We shall say that  h -t X a ( h )defined on the curve h -t X a ( h )  and contained in 
P, is quasiparallel if 

pabVTX" 0. ( B  4) 

Suppose this is the case. Then, by ( B  1) and ( B  3 )  

This equation has a unique solution for any initial value Xa a t  xn(0) .Equation 
( B  5 )  implies, by ( B  2) ,  n 

V,,(qa, X b )  = (VT qab) (qbcXC). ( B  6) 

Eence, if the initiai valuc is in Po,then the solution of ( B  5 )  is in PAall along the 
curve, because of unicyueness of solutions of ( B  6). Aloreover, that  solution also 
obeys ( B  4 ) .  That is, a vector Xu in Podetermines a unique qz~asiparallelJield h -+ X a ( h )  

0 

on fhe curve. Obviously quasiparallel transport maps PA,isonzorphically onto PA, 
for any pair (A,, A,). 

Let 11s now assume that  V is the Levi-Civita connection of a pseudo-Riemannian 
metric gab and that  pab is an  orthogonal projection: 

Then qz~asiparnllel transport preserces inner products: 

This case applies, in particular, to  space-time (M,gab) and the projector pabdefined 
in (3.3).Clearly, quasiparallel transport can be applied to complex vectors, too, 
and i t  preserves also the Hilbert inner product defined in $4. If the transport 
equation (5.4)is written in components with respect to a quasiparallel, orthonormal, 
transverse basis and if the ray is parametrized in terms of the electron proper time 
defined in connectiorl with (3.20),it reads 

This equation justifies the interpretation of (5.4)given in $ 5 .  
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