2,092 research outputs found

    Authentic tasks online: Two experiences

    Get PDF
    This chapter presents an exploration of the design and methods of two instantiations of authentic learning tasks in online learning environments. The first case employs a service learning orientation involving a distance learning project taught to students in four sites in two countries, while the second case is of a multimedia-based learning environment employing a scenario to engage students in realistic, simulated learning activities. The two approaches are examined through reference to characteristics of authentic tasks. The chapter demonstrates a range of possibilities for the instructor interested in more informed design of technology-based learning environments in higher education, and in particular, the design and creation of authentic learning tasks

    Near-Infrared Microlensing of Stars by the Super-Massive Black Hole in the Galactic Center

    Full text link
    We investigate microlensing amplification of faint stars in the dense stellar cluster in the Galactic Center (GC) by the super-massive black hole (BH). Such events would appear very close to the position of the radio source SgrA*, which is thought to coincide with the BH, and could be observed during the monitoring of stellar motions in the GC. We use the observed K-band (2.2 um) luminosity function (KLF) in the GC and in Baade's Window, as well as stellar population synthesis computations, to construct KLF models for the inner 300 pc of the Galaxy. These, and the observed dynamical properties of this region, are used to compute the rates of microlensing events, which amplify stars above specified detection thresholds. We present computations of the lensing rates and amplifications as functions of the event durations (weeks to years), for a range of detection thresholds. We find that short events dominate the total rate and that long events tend to have large amplifications. For the current detection limit of K=17 mag, the total microlensing rate is 0.003 1/yr, and the rate of events with durations >1 yr is 0.001 1/yr. Recent GC proper motion studies have revealed the possible presence of one or two variable K-band sources very close to SgrA* (Genzel et al 97; Ghez et al 98). These sources may have attained peak brightnesses of K~15 mag, about 1.5-2 mag above the observational detection limits, and appear to have varied on a timescale of ~1 yr. This behavior is consistent with long-duration microlensing of faint stars by the BH. However, we estimate that the probability that such an event could have been detected during the course of the recent proper motion studies is \~0.5%. A ten-fold improvement in the detection limit and 10 yr of monthly monitoring would increase the total detection probability to ~20%. (Abridged)Comment: 29 p. with 5 figs. To appear in ApJ. Changed to reflect published version. Short discussions of solar metallicity luminosity function and star-star microlensing adde

    The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1

    Get PDF
    I use recent photometric and stellar velocity dispersion measurements of the super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M ratios, together with population synthesis models of evolving star-clusters, to constrain the initial-mass-functions (IMFs) in these objects. I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1 and 3 M_sun. I compare the inferred IMFs with the mass functions (MFs) of Galactic globular clusters. It appears that 1569A has a sufficient reservoir of low-mass stars for it to plausibly evolve into an object similar to Galactic globular clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make it difficult for this SSC to become a globular cluster. If low-mass stars do dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]

    213 THE EFFECT OF DISTILLED METHYLSULFONYLMETHANE (MSM) ON HUMAN CHONDROCYTES IN VITRO

    Get PDF

    The Evolution of the Star-forming Interstellar Medium across Cosmic Time

    Full text link
    Over the past decade increasingly robust estimates of the dense molecular gas content in galaxy populations between redshift 0 and the peak of cosmic galaxy/star formation from redshift 1-3 have become available. This rapid progress has been possible due to the advent of powerful ground-based, and space telescopes for combined study of several millimeter to far-IR, line or continuum tracers of the molecular gas and dust components. The main conclusions of this review are: 1. Star forming galaxies contained much more molecular gas at earlier cosmic epochs than at the present time. 2. The galaxy integrated depletion time scale for converting the gas into stars depends primarily on z or Hubble time, and at a given z, on the vertical location of a galaxy along the star-formation rate versus stellar mass "main-sequence" (MS) correlation. 3. Global rates of galaxy gas accretion primarily control the evolution of the cold molecular gas content and star formation rates of the dominant MS galaxy population, which in turn vary with the cosmological expansion. A second key driver may be global disk fragmentation in high-z, gas rich galaxies, which ties local free-fall time scales to galactic orbital times, and leads to rapid radial matter transport and bulge growth. Third, the low star formation efficiency inside molecular clouds is plausibly set by super-sonic streaming motions, and internal turbulence, which in turn may be driven by conversion of gravitational energy at high-z, and/or by local feedback from massive stars at low-z. 4. A simple 'gas regulator' model is remarkably successful in predicting the combined evolution of molecular gas fractions, star formation rates, galactic winds, and gas phase metallicities.Comment: To be published in Annual Reviews of Astronomy and Astrophysic

    The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    Get PDF
    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states, and the H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus, gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the ``square root'' part of the curve-of-growth, then the expected ratio of ortho and para vibrational line strengths is the square root of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models which illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory (ISO) measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for publication in Ap

    Nanoparticle formation of chitosan induced by 4-sulfonatocalixarenes: utilization for alkaloid encapsulation

    Get PDF
    Spontaneous formation of positively charged nanoparticles was observed upon mixing more than stoichiometric amount of chitosan with 4-sulfonatocalix[8]arene (SCX8) in acidic solution. The particle size did not change with SCX8 concentration, polymer chain length, and the degree of deacetylation at 0.002 ≤ SCX8/chitosan ≤0.043 molar ratios in 0.01 M HCl. However, larger aggregates were produced when chitosan concentration was increased. The most stable nanoparticles with 160 nm diameter and narrow size distribution were obtained at pH 4 using low molecular weight chitosan. These particles encapsulated coralyne with more than 90 % entrapment efficiency and 15 % loading capacity. A loading ratio of [coralyne]/[SCX8] = 1.7 was achieved without any stability loss. 4-Sulfonatocalix[4]arene induced the formation of slightly smaller nanoparticles than its homologs comprising 6 or 8 phenol units. © 2016, Springer-Verlag Berlin Heidelberg

    4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation

    Get PDF
    Methylimidazolium side groups were grafted via ether linkage to dextran and the self-assembly of these polymers with 4-sulfonato-calix[n]arenes (SCXn) was studied in aqueous solutions. Dynamic light scattering and zeta potential measurements revealed the mixing ratio ranges of the constituents where stable nanoparticles could be created. The macrocycle size of SCXn and the molecular mass of the polymer barely affected the nanoparticle diameter, but the lowering of the imidazolium degree of substitution substantially diminished the stability of the associates. The pH change from neutral to acidic also unfavourably influenced the self-organization owing mainly to the decrease of the SCXn charge. Cryogenic transmission electron microscopy images proved the spherical morphology of the nanoproducts in which the stoichiometry of the constituents was always close to the one corresponding to charge compensation. The flexible and positively charged dextran-chains are compacted by the polyanionic SCXn. Coralyne, a pharmacologically important alkaloid was efficiently embedded by self-assembly in the produced nanoparticles reaching 99% association efficiency. © 2019 Elsevier Lt

    Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy

    Get PDF
    Thirty-nine Type 1 (insulin-dependent) diabetic patients were studied prospectively after simultaneous pancreas and kidney (n=26) and kidney grafting alone (n=13) by measuring heart rate variation during various manoeuvers and answering a standardized questionnaire every 6 to 12 months post-transplant. While age, duration of diabetes, and serum creatinine (168.1±35.4 vs 132.7±17.7 mgrmol/l) were comparable, haemoglobin A1 levels were significantly lower (6.6±0.2 vs 8.5±0.3%; p<0.01) and the mean observation time longer (35±2 vs 25±3 months; p<0.05) in the pancreas recipients when compared with kidney transplanted patients. Heart rate variation during deep breathing, lying/standing and Valsalva manoeuver were very similar in both groups initially and did not improve during follow-up. However, there was a significant reduction in heart rate in the pancreas recipient group. Autonomic symptoms of the gastrointestinal and thermoregulatory system improved more in the pancreas grafted subjects, while hypoglycaemia unawareness deteriorated in the kidney recipients. This study suggests that long-term normoglycaemia by successful pancreatic grafting is able to halt the progression of autonomic dysfunction
    corecore