4,033 research outputs found

    Voir Dire: What Can I Ask and What Can I Say

    Get PDF

    Simulation of the Directional Dark Matter Detector (D3) and Directional Neutron Observer (DiNO)

    Full text link
    Preliminary simulation and optimization studies of the Directional Dark Matter Detector and the Directional Neutron Observer are presented. These studies show that the neutron interaction with the gas-target in these detectors is treated correctly by GEANT4 and that by lowering the pressure, the sensitivity to low-mass WIMP candidates is increased. The use of negative ion drift might allow us to search the WIMP mass region suggested by the results of the non-directional experiments DAMA/LIBRA, CoGeNT and CRESST-II.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the e−e^- rejection factor of 5.6×10−65.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc

    Cerenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cerenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cerenkov angle and the electric charge with the RICH, are discussed. A Likelihood method for the Cerenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event, implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.Comment: Proceedings submitted to RICH 2002 (Pylos-Greece

    Search for exotic contributions to atmospheric neutrino oscillations

    Full text link
    The energy spectrum of neutrino-induced upward-going muons in MACRO was analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant effect. The data disfavor these possibilities even at a sub-dominant level; stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter ∣Δv∣<6×10−24|\Delta v| < 6 \times 10^{-24} at sin⁥2Ξv\sin 2{\theta}_v = 0 and ∣Δv∣<2.5Ă·5×10−26|\Delta v| < 2.5 \div 5 \times 10^{-26} at sin⁥2Ξv\sin 2{\theta}_v = ±\pm1. The limits can be re-interpreted as bounds on the Equivalence Principle violation parameters.Comment: Presented at the 29th I.C.R.C., Pune, India (2005

    Exclusion, Discovery and Identification of Dark Matter with Directional Detection

    Full text link
    Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to data from upcoming directional detectors. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated.Comment: 10 pages, 11 figures; Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    A Comment on the Strong Interactions of Color-Neutral Technibaryons

    Full text link
    We estimate the cross section for the scattering of a slow, color-neutral technibaryon made of colored constituents with nuclei. We find a cross section of order A2 10−45A^2\ 10^{-45} cm2^2, where AA is the atomic number of the nucleus. Even if technibaryons constitute the dark matter in the galactic halo, this is too small to be detected in future underground detectors.Comment: 6 pages, BUHEP-92-36 and UCSD/PTH 92-3
    • 

    corecore