98 research outputs found

    The Possibility of a Non-Lagrangian Theory of Gravity

    Full text link
    General Relativity resembles a very elegant crystal glass: If we touch its principles, that is, its Lagrangian, there is a risk of breaking everything. Or, if we will, it is like a short blanket: Curing some problems creates new problems. This paper is devoted to bring to light the reasons why we pursue the possibility of a non-Lagrangian theory of gravity under the hypothesis of an extension of the original general relativity with an ansatz inspired in the fundamental principles of classical and quantum physics.Comment: 6 pages, 1 figure. Version accepted in Universe MDP

    Some Remarks on Alternative (or Modified) Theories of Gravity

    Full text link
    A seminar given about 30 years ago by Ruben Aldrovandi motivates this text where some reflexions about constructing theories that modify General Relativity are made. Two particular cases, the Brans-Dicke and Unimodular Gravity ones, are discussed, in a quite qualitative way, showing on how they can address some of the most outstanding problems of General Relativity, specially the transplanckian physics and the cosmological constant problem.Comment: Latex file, 14 pages. To appear in the volume "Tribute to Ruben Aldrovandi" (Editora Livraria da F\'isica, S\~ao Paulo, 2024

    Modified gravity models and the central cusp of dark matter haloes in galaxies

    Get PDF
    The N-body dark matter (DM) simulations point that DM density profiles, e.g. the Navarro Frenk White (NFW) halo, should be cuspy in its centre, but observations disfavour this kind of DM profile. Here we consider whether the observed rotation curves close to the galactic centre can favour modified gravity models in comparison to the NFW halo, and how to quantify such difference. Two explicit modified gravity models are considered, Modified Newtonian Dynamics (MOND) and a more recent approach renormalization group effects in general relativity (RGGR). It is also the purpose of this work to significantly extend the sample on which RGGR has been tested in comparison to other approaches. By analysing 62 galaxies from five samples, we find that (i) there is a radius, given by half the disc scale length, below which RGGR and MOND can match the data about as well or better than NFW, albeit the formers have fewer free parameters; (ii) considering the complete rotation curve data, RGGR could achieve fits with better agreement than MOND, and almost as good as a NFW halo with two free parameters (NFW and RGGR have, respectively, two and one more free parameters than MOND)

    Renormalization Group approach to Gravity: the running of G and L inside galaxies and additional details on the elliptical NGC 4494

    Full text link
    We explore the phenomenology of nontrivial quantum effects on low-energy gravity. These effects come from the running of the gravitational coupling parameter G and the cosmological constant L in the Einstein-Hilbert action, as induced by the Renormalization Group (RG). The Renormalization Group corrected General Relativity (RGGR model) is used to parametrize these quantum effects, and it is assumed that the dominant dark matter-like effects inside galaxies is due to these nontrivial RG effects. Here we present additional details on the RGGR model application, in particular on the Poisson equation extension that defines the effective potential, also we re-analyse the ordinary elliptical galaxy NGC 4494 using a slightly different model for its baryonic contribution, and explicit solutions are presented for the running of G and L. The values of the NGC 4494 parameters as shown here have a better agreement with the general RGGR picture for galaxies, and suggest a larger radial anisotropy than the previously published result.Comment: 9 pages, 2 figs. Based on a talk presented at the VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Buzios, RJ, Brazil. v2: typos removed, matches published versio

    Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    Full text link
    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not "observer dependent" as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: \lambda_J = (5\pi/G)^(1/2)Q^(-1/3)\rho_dm^(-1/6). The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 x 10^(-6) solar masses.Comment: 18 pages, 2 figures. Accepted for publication in JCA

    The growth factor parametrization versus numerical solutions in flat and non-flat dark energy models

    Full text link
    In the present investigation we use observational data of fσ8 f \sigma_ {8} to determine observational constraints in the plane (Ωm0,σ8)(\Omega_{m0},\sigma_{8}) using two different methods: the growth factor parametrization and the numerical solutions method for density contrast, δm\delta_{m}. We verified the correspondence between both methods for three models of accelerated expansion: the ΛCDM\Lambda CDM model, the w0waCDM w_{0}w_{a} CDM model and the running cosmological constant RCCRCC model. In all case we consider also curvature as free parameter. The study of this correspondence is important because the growth factor parametrization method is frequently used to discriminate between competitive models. Our results we allow us to determine that there is a good correspondence between the observational constrains using both methods. We also test the power of the fσ8 f\sigma_ {8} data to constraints the curvature parameter within the ΛCDM \Lambda CDM model. For this we use a non-parametric reconstruction using Gaussian processes. Our results show that the fσ8 f\sigma_ {8} data with the current precision level does not allow to distinguish between a flat and non-flat universe
    • …
    corecore