6,551 research outputs found

    A Pulse Shaping Algorithm of a Coherent Matter Wave. Controlling Reaction Dynamics

    Full text link
    A pulse shaping algorithm for a matter wave with the purpose of controlling a binary reaction has been designed. The scheme is illustrated for an Eley-Rideal reaction where an impinging matter-wave atom recombines with an adsorbed atom on a metal surface. The wave function of the impinging atom is shaped such that the desorbing molecule leaves the surface in a specific vibrational state.Comment: 4 pages, 5 figure

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    Full text link
    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9% larger and 400 K cooler than predicted. Models adopting significantly lower mixing length parameters l/H_p remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of l/H_p=1.30 (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5+-0.6 Gyr. Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.Comment: 11 pages, 8 figures, accepted for publication by A&

    A deeply embedded young protoplanetary disk around L1489 IRS observed by the submillimeter array

    Full text link
    Circumstellar disks are expected to form early in the process that leads to the formation of a young star, during the collapse of the dense molecular cloud core. It is currently not well understood at what stage of the collapse the disk is formed or how it subsequently evolves. We aim to identify whether an embedded Keplerian protoplanetary disk resides in the L1489 IRS system. Given the amount of envelope material still present, such a disk would respresent a very young example of a protoplanetary disk. Using the Submillimeter Array (SMA) we have observed the HCO+^+ J=J= 3--2 line with a resolution of about 1''. At this resolution a protoplanetary disk with a radius of a few hundred AUs should be detectable, if present. Radiative transfer tools are used to model the emission from both continuum and line data. We find that these data are consistent with theoretical models of a collapsing envelope and Keplerian circumstellar disk. Models reproducing both the SED and the interferometric continuum observations reveal that the disk is inclined by 40^\circ which is significantly different to the surrounding envelope (74^\circ). This misalignment of the angular momentum axes may be caused by a gradient within the angular momentum in the parental cloud or if L1489 IRS is a binary system rather than just a single star. In the latter case, future observations looking for variability at sub-arcsecond scales may be able to constrain these dynamical variations directly. However, if stars form from turbulent cores, the accreting material will not have a constant angular momentum axis (although the average is well defined and conserved) in which case it is more likely to have a misalignment of the angular momentum axes of the disk and the envelope.Comment: 11 pages, 13 figures, accepted by A&

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic

    Anvendelse af ufuldstændige blokforsøg

    Get PDF
    I forsøg med mange forsøgsled, forsøg på uensartede arealer og forsøg, som af praktiske grunde skal opdeles på mindre enheder, vil det ofte være fordelagtigt at anvende blokke, som ikke indeholder alle forsøgsled. Sådanne ufuldstændige blokke kan konstrueres efter flere forskellige principper. I enfaktorielle forsøg anvendes oftest metoder, som sikrer, at alle par af forsøgsled kan sammenlignes med den samme (og bedst mulige) sikkerhed, mens man i flerfaktorielle forsøg oftest anvender metoder, som sikrer, at de mest interessante effekter (hoved- og/eller vekselvirkninger) kan estimeres bedst muligt. Artiklen viser tre eksempler på anvendelse af ufuldstændige blokforsøg: 1) Sortsforsøg i ærter (enfaktoriel), 2) Frøavlsforsøg med strandsvingel (trefaktoriel) og 3) Forsøg med svampemidler i byg (tofaktorielt split-plot). For hver af disse vises den benyttede plan samt effekten af at benytte planen i stedet et randomiseret blokforsøg med fuldstændige blokke

    The LOFT (Large Observatory for X-ray Timing) background simulations

    Full text link
    The Large Observatory For X-ray Timing (LOFT) is an innovative medium-class mission selected for an assessment phase in the framework of the ESA M3 Cosmic Vision call. LOFT is intended to answer fundamental questions about the behaviour of matter in the very strong gravitational and magnetic fields around compact objects. With an effective area of ~10 m^2 LOFT will be able to measure very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and to optimize the instrument design. The two main contributions to the background are cosmic diffuse X-rays and high energy cosmic rays; also, albedo emission from the Earth is significant. These contributions to the background for both the Large Area Detector and the Wide Field Monitor are discussed, on the basis of extensive Geant-4 simulations of a simplified instrumental mass model.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-209, 201

    Spatially resolved spectroscopy of Coma cluster early-type galaxies - II:the minor axis dataset

    Get PDF
    We present minor axis, off set major axis and one diagonal long slit spectra for 10 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. We derive rotation curves, velocity dispersion profiles and the H-3 and H-4 coefficients of the Hermite decomposition of the line of sight velocity distribution. Moreover, we derive the line index profiles of Mg, Fe and Hbeta line indices and assess their errors. The data will be used to construct dynamical models of the galaxies and study their stellar populations
    corecore