12 research outputs found

    Spirocyclic chromanes exhibit antiplasmodial activities and inhibit all intraerythrocytic life cycle stages

    Get PDF
    AbstractWe screened a collection of synthetic compounds consisting of natural-product-like substructural motifs to identify a spirocyclic chromane as a novel antiplasmodial pharmacophore using an unbiased cell-based assay. The most active spirocyclic compound UCF 201 exhibits a 50% effective concentration (EC50) of 350 nM against the chloroquine-resistant Dd2 strain and a selectivity over 50 using human liver HepG2 cells. Our analyses of physicochemical properties of UCF 201 showed that it is in compliance with Lipinski's parameters and has an acceptable physicochemical profile. We have performed a limited structure-activity-relationship study with commercially available chromanes preserving the spirocyclic motif. Our evaluation of stage specificities of UCF 201 indicated that the compound is early-acting in blocking parasite development at ring, trophozoite and schizont stages of development as well as merozoite invasion. SPC is an attractive lead candidate scaffold because of its ability to act on all stages of parasite's aexual life cycle unlike current antimalarials

    Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile- Specific DNA Adenine Methyltransferase

    Get PDF
    S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host–pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 μM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA–DNA–inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection

    Exploring Unconventional SAM Analogues To Build Cell-Potent Bisubstrate Inhibitors for Nicotinamide N-Methyltransferase

    No full text
    Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide and has been associated with various diseases. Herein, we report the first cell-potent NNMT bisubstrate inhibitor II399, demonstrating a Ki of 5.9 nM in a biochemical assay and a cellular IC50value of 1.9µM. The inhibition mechanism and cocrystal structure confirmed II399 engages both the substrate and cofactor binding pockets. Computational modeling and binding data reveal a balancing act between enthalpic and entropic components that lead to II399’s low nM binding affinity. Notably, II399 is 1,000-fold more selective for NNMT than closely related methyltransferases. We expect that II399would serve as a valuable probe to elucidate NNMT biology. Furthermore, this strategy provides the first case of introducing unconventional SAM mimics, which can be adopted to develop cell-potent inhibitors for other SAM-dependent methyltransferases

    Exploring Unconventional SAM Analogues To Build Cell-Potent Bisubstrate Inhibitors for Nicotinamide N-Methyltransferase

    No full text
    Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide and has been associated with various diseases. Herein, we report the first cell-potent NNMT bisubstrate inhibitor II399, demonstrating a Ki of 5.9 nM in a biochemical assay and a cellular IC50 value of 1.9 μM. The inhibition mechanism and cocrystal structure confirmed II399 engages both the substrate and cofactor binding pockets. Computational modeling and binding data reveal a balancing act between enthalpic and entropic components that lead to II399′s low nM binding affinity. Notably, II399 is 1 000-fold more selective for NNMT than closely related methyltransferases. We expect that II399 would serve as a valuable probe to elucidate NNMT biology. Furthermore, this strategy provides the first case of introducing unconventional SAM mimics, which can be adopted to develop cell-potent inhibitors for other SAM-dependent methyltransferases

    Spirocyclic Chromanes Exhibit Antiplasmodial Activities And Inhibit All Intraerythrocytic Life Cycle Stages

    No full text
    We screened a collection of synthetic compounds consisting of natural-product-like substructural motifs to identify a spirocyclic chromane as a novel antiplasmodial pharmacophore using an unbiased cell-based assay. The most active spirocyclic compound UCF 201 exhibits a 50% effective concentration (EC50) of 350 nM against the chloroquine-resistant Dd2 strain and a selectivity over 50 using human liver HepG2 cells. Our analyses of physicochemical properties of UCF 201 showed that it is in compliance with Lipinski\u27s parameters and has an acceptable physicochemical profile. We have performed a limited structure-activity-relationship study with commercially available chromanes preserving the spirocyclic motif. Our evaluation of stage specificities of UCF 201 indicated that the compound is early-acting in blocking parasite development at ring, trophozoite and schizont stages of development as well as merozoite invasion. SPC is an attractive lead candidate scaffold because of its ability to act on all stages of parasite\u27s aexual life cycle unlike current antimalarials

    Improved Cell-Potent and Selective Peptidomimetic Inhibitors of Protein N-Terminal Methyltransferase 1

    No full text
    Protein N-terminal methyltransferase 1 (NTMT1) recognizes a unique N-terminal X-P-K/R motif (X represents any amino acid other than D/E) and transfers 1–3 methyl groups to the N-terminal region of its substrates. Guided by the co-crystal structures of NTMT1 in complex with the previously reported peptidomimetic inhibitor DC113, we designed and synthesized a series of new peptidomimetic inhibitors. Through a focused optimization of DC113, we discovered a new cell-potent peptidomimetic inhibitor GD562 (IC50 = 0.93 ± 0.04 µM). GD562 exhibited improved inhibition of the cellular N-terminal methylation levels of both the regulator of chromosome condensation 1 and the oncoprotein SET with an IC50 value of ~50 µM in human colorectal cancer HCT116 cells. Notably, the inhibitory activity of GD562 for the SET protein increased over 6-fold compared with the previously reported cell-potent inhibitor DC541. Furthermore, GD562 also exhibited over 100-fold selectivity for NTMT1 against several other methyltransferases. Thus, this study provides a valuable probe to investigate the biological functions of NTMT1

    A unique binding pocket induced by a noncanonical SAH mimic to develop potent and selective PRMT inhibitors

    No full text
    Protein arginine methyltransferases (PRMTs) are attractive targets for developing therapeutic agents, but selective PRMT inhibitors targeting the cofactor SAM binding site are limited. Herein, we report the discovery of a noncanonical but less polar SAH surrogate YD1113 by replacing the benzyl guanidine of a pan-PRMT inhibitor with a benzyl urea, potently and selectively inhibiting PRMT3/4/5. Importantly, crystal structures reveal that the benzyl urea moiety of YD1113 induces a unique and novel hydrophobic binding pocket in PRMT3/4, providing a structural basis for the selectivity. In addition, YD1113 can be modified by introducing a substrate mimic to form a “T-shaped” bisubstrate analogue YD1290 to engage both the SAM and substrate binding pockets, exhibiting potent and selective inhibition to type I PRMTs (IC50 < 5 nmol/L). In summary, we demonstrated the promise of YD1113 as a general SAH mimic to build potent and selective PRMT inhibitors

    Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile-Specific DNA Adenine Methyltransferase

    No full text
    : S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 ÎĽM) is 10Ă— and 5Ă— more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection

    Going beyond Binary: Rapid Identification of Protein–Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach

    No full text
    Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery

    Going beyond Binary: Rapid Identification of Protein–Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach

    No full text
    Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery
    corecore