35 research outputs found

    Ritualized Submission and the Reduction of Aggression in an Invertebrate

    Get PDF
    SummaryRitualized behaviors that signify acceptance of a dominance relationship and reduce aggression between rivals are a common feature of vertebrate social behavior [1, 2]. Although some invertebrates, including crayfish [3], lobsters [4], and ants [5], display dominance postures, more complex dominance rituals and their effects on fitness have not been reported. We found that crayfish display such a complex ritual, when two males engaged in pseudocopulatory behavior to signify their dominance relationship. This was followed by a reduction in aggression and an increased likelihood of the subordinate's survival. Pseudocopulation was initiated by the eventual dominant and could be accepted or refused by the eventual subordinate. The frequency of aggressive behavior declined significantly during the first hour in all pairs that pseudocopulated but remained high in pairs that did not. Whereas all the subordinate members of pairs that pseudocopulated survived the initial 24 hr of pairing, half of subordinates that did not pseudocopulate were killed during that time. This differential mortality indicates that the reduction of aggression induced by the pseudocopulatory ritual directly enhances the differential survival of male crayfish that engage in this behavior

    Patterns of Neural Circuit Activation and Behavior during Dominance Hierarchy Formation in Freely Behaving Crayfish

    Get PDF
    Creation of a dominance hierarchy within a population of animals typically involves a period of agonistic activity in which winning and losing decide relative positions in the hierarchy. Among crayfish, fighting between size-matched animals leads to an abrupt change of behavior as the new subordinate retreats and escapes from the attacks and approaches of the dominant (Issa et al., 1999). We used high-speed videography and electrical recordings of aquarium field potentials to monitor the release of aggressive and defensive behavior, including the activation of neural circuits for four different tail-flip behaviors. We found that the sequence of tail-flip circuit excitation traced the development of their dominance hierarchy. Offensive tail flipping, attacks, and approaches by both animals were followed by a sharp rise in the frequency of nongiant and medial giant escape tail flips and a fall in the frequency of offensive tail flips of the new subordinate. These changes suggest that sudden, coordinated changes in the excitability of a set of neural circuits in one animal produce the changes in behavior that mark its transition to subordinate status

    Neural Circuit Reconfiguration by Social Status

    Get PDF
    The social rank of an animal is distinguished by its behavior relative to others in its community. Although social-status-dependent differences in behavior must arise because of differences in neural function, status-dependent differences in the underlying neural circuitry have only begun to be described. We report that dominant and subordinate crayfish differ in their behavioral orienting response to an unexpected unilateral touch, and that these differences correlate with functional differences in local neural circuits that mediate the responses. The behavioral differences correlate with simultaneously recorded differences in leg depressor muscle EMGs and with differences in the responses of depressor motor neurons recorded in reduced, in vitro preparations from the same animals. The responses of local serotonergic interneurons to unilateral stimuli displayed the same status-dependent differences as the depressor motor neurons. These results indicate that the circuits and their intrinsic serotonergic modulatory components are configured differently according to social status, and that these differences do not depend on a continuous descending signal from higher centers

    Social Interactions Determine Postural Network Sensitivity to 5-HT

    Get PDF
    The excitability of the leg postural circuit and its response to serotonin (5-HT) were studied in vitro in thoracic nervous system preparations of dominant and subordinate male crayfishes. We demonstrate that the level of spontaneous tonic activity of depressor and levator motoneurons (MNs) (which control downward and upward movements of the leg, respectively) and the amplitude of their resistance reflex are larger in dominants than in subordinates. Moreover, we show that serotonergic neuromodulation of the postural circuit also depends on social status. Depressor and levator MN tonic firing rates and resistance reflex amplitudes were significantly modified in the presence of 10 M5-HT in dominants but not in subordinates. Using intracellular recording from depressor MNs,we show that their input resistance was not significantly different in dominants and subordinates in control conditions. However, 5-HT produced a marked depolarization in dominants and a significantly weaker depolarization in subordinates. Moreover, in the presence of 5-HT, the amplitude of the resistance reflex and the input resistance of MNs increased in dominants and decreased in subordinates. The peak amplitude and the decay phase of unitary EPSPs triggered by sensory spikes were significantly increased by 5-HT in dominants but not in subordinates. These observations suggest that neural networks are more reactive in dominants than in subordinates, and this divergence is even reinforced by 5-HT modulation

    Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish

    Get PDF
    The zebrafish has significant advantages for studying the morphological development of the brain. However, little is known about the functional development of the zebrafish brain. We used patch clamp electrophysiology in live animals to investigate the emergence of excitability in cerebellar Purkinje cells, functional maturation of the cerebellar circuit, and establishment of sensory input to the cerebellum. Purkinje cells are born at 3 days post-fertilization (dpf). By 4 dpf, Purkinje cells spontaneously fired action potentials in an irregular pattern. By 5 dpf, the frequency and regularity of tonic firing had increased significantly and most cells fired complex spikes in response to climbing fiber activation. Our data suggest that, as in mammals, Purkinje cells are initially innervated by multiple climbing fibers that are winnowed to a single input. To probe the development of functional sensory input to the cerebellum, we investigated the response of Purkinje cells to a visual stimulus consisting of a rapid change in light intensity. At 4 dpf, sudden darkness increased the rate of tonic firing, suggesting that afferent pathways carrying visual information are already active by this stage. By 5 dpf, visual stimuli also activated climbing fibers, increasing the frequency of complex spiking. Our results indicate that the electrical properties of zebrafish and mammalian Purkinje cells are highly conserved and suggest that the same ion channels, Nav1.6 and Kv3.3, underlie spontaneous pacemaking activity. Interestingly, functional development of the cerebellum is temporally correlated with the emergence of complex, visually-guided behaviors such as prey capture. Because of the rapid formation of an electrically-active cerebellum, optical transparency, and ease of genetic manipulation, the zebrafish has great potential for functionally mapping cerebellar afferent and efferent pathways and for investigating cerebellar control of motor behavior

    Compromised N-Glycosylation Processing of Kv3.1b Correlates with Perturbed Motor Neuron Structure and Locomotor Activity

    Get PDF
    Neurological difficulties commonly accompany individuals suffering from congenital disorders of glycosylation, resulting from defects in the N-glycosylation pathway. Vacant N-glycosylation sites (N220 and N229) of Kv3, voltage-gated K+ channels of high-firing neurons, deeply perturb channel activity in neuroblastoma (NB) cells. Here we examined neuron development, localization, and activity of Kv3 channels in wildtype AB zebrafish and CRISPR/Cas9 engineered NB cells, due to perturbations in N-glycosylation processing of Kv3.1b. We showed that caudal primary (CaP) motor neurons of zebrafish spinal cord transiently expressing fully glycosylated (WT) Kv3.1b have stereotypical morphology, while CaP neurons expressing partially glycosylated (N220Q) Kv3.1b showed severe maldevelopment with incomplete axonal branching and extension around the ventral musculature. Consequently, larvae expressing N220Q in CaP neurons had impaired swimming locomotor activity. We showed that replacement of complex N-glycans with oligomannose attached to Kv3.1b and at cell surface lessened Kv3.1b dispersal to outgrowths by altering the number, size, and density of Kv3.1b-containing particles in membranes of rat neuroblastoma cells. Opening and closing rates were slowed in Kv3 channels containing Kv3.1b with oligomannose, instead of complex N-glycans, which suggested a reduction in the intrinsic dynamics of the Kv3.1b α-subunit. Thus, N-glycosylation processing of Kv3.1b regulates neuronal development and excitability, thereby controlling motor activity

    Hermansky-Pudlak syndrome type 1 causes impaired anti-microbial immunity and inflammation due to dysregulated immunometabolism

    Get PDF
    Hermansky-Pudlak syndrome (HPS) types 1 and 4 are caused by defective vesicle trafficking. The mechanism for Crohn's disease-like inflammation, lung fibrosis, and macrophage lipid accumulation in these patients remains enigmatic. The aim of this study is to understand the cellular basis of inflammation in HPS-1. We performed mass cytometry, proteomic and transcriptomic analyses to investigate peripheral blood cells and serum of HPS-1 patients. Using spatial transcriptomics, granuloma-associated signatures in the tissue of an HPS-1 patient with granulomatous colitis were dissected. In vitro studies were conducted to investigate anti-microbial responses of HPS-1 patient macrophages and cell lines. Monocytes of HPS-1 patients exhibit an inflammatory phenotype associated with dysregulated TNF, IL-1α, OSM in serum, and monocyte-derived macrophages. Inflammatory macrophages accumulate in the intestine and granuloma-associated macrophages in HPS-1 show transcriptional signatures suggestive of a lipid storage and metabolic defect. We show that HPS1 deficiency leads to an altered metabolic program and Rab32-dependent amplified mTOR signaling, facilitated by the accumulation of mTOR on lysosomes. This pathogenic mechanism translates into aberrant bacterial clearance, which can be rescued with mTORC1 inhibition. Rab32-mediated mTOR signaling acts as an immuno-metabolic checkpoint, adding to the evidence that defective bioenergetics can drive hampered anti-microbial activity and contribute to inflammation

    Emergency medical services preparedness in dual disasters: war in the era of COVID-19 in Armenia

    Get PDF
    Introduction: Emergency Medical Services (EMS) is a critical part of Disaster Medicine and has the ability to limit morbidity and mortality in a disaster event with sufficient training and experience. Emergency systems in Armenia are in an early stage of development and there is no Emergency Medicine residency training in the country. As a result, EMS physicians are trained in a variety of specialties. Armenia is also a country prone to disasters, and recently, the ArmenianEMSsystem was challenged by two concurrent disasters when the 2020 Nagorno-Karabakh War broke out in the midst of the SARS-CoV-2/coronavirus disease 2019 (COVID-19) pandemic. Study Objective: This study aims to assess the current state of disaster preparedness of the Armenian EMS system and the effects of the simultaneous pandemic and war on EMS providers. Methods: This was a cross-sectional study conducted by anonymous survey distributed to physicians still working in the Yerevan EMS system who provided care to war casualties and COVID-19 patients. Results: Survey response rate was 70.6%.Most participants had been a physician (52.1%) or EMS physician (66.7%) for three or less years. The majority were still in residency (64.6%). Experience in battlefield medicine was limited prior to the war, with the majority reporting no experience in treating mass casualties (52.1%), wounds from explosives (52.1%), or performing surgical procedures (52.1%), and many reporting minimal to no experience in treating gunshot wounds (62.5%), severe burns (64.6%), and severe orthopedic injuries (64.6%). Participants had moderate experience in humanitarian medicine prior to war. Greater experience in battlefield medicine was found in participants with more than three years of experience as a physician (z-score −3.26; P value <.01) or as anEMS physician (z-score −2.76; P value <.01) as well as being at least 30 years old (z-score −2.11; P value = .03). Most participants felt they were personally in danger during the war at least sometimes (89.6%). Conclusion: Prior to the COVID-19 pandemic and simultaneous 2020 Nagorno-Karabakh War, EMS physicians in Armenia had limited training and experience in Disaster Medicine. This system, and the frontline physicians on whom it relies, was strained by the dual disaster, highlighting the need for Disaster Medicine training in all prehospital medical providers
    corecore