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Behavioral/Systems/Cognitive

Social Interactions Determine Postural Network Sensitivity
to 5-HT

Daniel Cattaert,1 Jean-Paul Delbecque,1 Donald H. Edwards,2 and Fadi A. Issa2

1Université de Bordeaux, Centre National de la Recherche Scientifique, Centre de Neurosciences Intégratives et Cognitives, Biologie Animale, 33405 Talence
Cedex, France, and 2Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5030

The excitability of the leg postural circuit and its response to serotonin (5-HT) were studied in vitro in thoracic nervous system prepara-
tions of dominant and subordinate male crayfishes. We demonstrate that the level of spontaneous tonic activity of depressor and levator
motoneurons (MNs) (which control downward and upward movements of the leg, respectively) and the amplitude of their resistance
reflex are larger in dominants than in subordinates. Moreover, we show that serotonergic neuromodulation of the postural circuit also
depends on social status. Depressor and levator MN tonic firing rates and resistance reflex amplitudes were significantly modified in the
presence of 10 �M 5-HT in dominants but not in subordinates. Using intracellular recording from depressor MNs, we show that their input
resistance was not significantly different in dominants and subordinates in control conditions. However, 5-HT produced a marked
depolarization in dominants and a significantly weaker depolarization in subordinates. Moreover, in the presence of 5-HT, the amplitude
of the resistance reflex and the input resistance of MNs increased in dominants and decreased in subordinates. The peak amplitude and
the decay phase of unitary EPSPs triggered by sensory spikes were significantly increased by 5-HT in dominants but not in subordinates.
These observations suggest that neural networks are more reactive in dominants than in subordinates, and this divergence is even
reinforced by 5-HT modulation.

Introduction
Socially dominant and subordinate crayfish differ in a number of
behavioral characteristics that result from changes in excitability
of specific neural circuits (for a review, see Edwards and Spitzer,
2006). For example, posture is changed during the establishment
of social status (Livingstone et al., 1980).

Serotonin (5-HT) has been implicated in the mechanisms that
control status-dependent changes in neural circuits (Edwards
and Spitzer, 2006). 5-HT was suggested to be involved in the
postural control in dominant crayfish, because 5-HT injection
caused animals to stand on the tips of their walking legs, with their
claws open in front of them (Livingstone et al., 1980; Kravitz, 1988).

In crustacean legs, the coxo-basal chordotonal organ (CBCO)
plays an important role in posture because it mediates monosyn-
aptic resistance reflexes in the second leg joint (El Manira et al.,
1991). In a previous analysis of the effects of 5-HT on the walking
leg postural networks in vitro, it was shown that in some commu-
nal animals, 5-HT exerted an increase of the resistance reflex
amplitude of depressor motoneurons (MNs), which are respon-
sible for downward movements of the leg, and thereby controls
the height of animal posture. By contrast, in other animals, no

change (or a slight decrease) was observed (Le Bon-Jego et al.,
2004). The finding that 5-HT had opposite effects on the reflex
responses of different members of the same population was sim-
ilar to the results of earlier experiments on the serotonergic mod-
ulation of the escape circuit mediated by lateral giant (LG)
command fibers (Yeh et al., 1996, 1997; Teshiba et al., 2001).
Those experiments demonstrated that 5-HT’s neuromodulatory
effect depended on the crayfish’s social status. When applied to
the ventral nerve cord of crayfish, 5-HT (50 �M) facilitated the
LG response to sensory stimulation in dominant animals and
inhibited it in subordinates (Yeh et al., 1996, 1997).

To test whether social status was also responsible for the du-
ality of responses to 5-HT observed in the postural circuit, we
applied 10 �M 5-HT on in vitro preparations of the walking leg
systems dissected out from crayfish of known social status. We
studied the properties of the postural network in dominant and
subordinate animals, and demonstrated that the level of sponta-
neous tonic activity and the amplitude of the resistance reflex are
larger in dominants than in subordinates. Moreover, we showed
that serotonergic neuromodulation of the postural circuit also
depends on social status, as in the case of the LG escape circuit
(Yeh et al., 1996; Teshiba et al., 2001), thereby generalizing the
effects of social status on 5-HT neuromodulation of different
motor networks.

Materials and Methods
Experimental animals. Experiments were performed on male adult cray-
fish form I (Procambarus clarkii, n � 39) weighing 25–30 g. The animals
were obtained locally. Communal animals were maintained indoors in
large tanks containing 80 –100 animals at 18�20°C and fed once a week
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Intégratives et Cognitives, Biologie Animale, Bâtiment B2, 33405 Talence Cedex, France. E-mail: d.cattaert@cnic.
u-bordeaux.fr.

DOI:10.1523/JNEUROSCI.0367-10.2010
Copyright © 2010 the authors 0270-6474/10/305603-14$15.00/0

The Journal of Neuroscience, April 21, 2010 • 30(16):5603–5616 • 5603



with shrimp pellets and carrots. Animals were
maintained on a 12:12 h light:dark cycle.

Pair formation. Before pairing, crayfishes
were isolated in individual aquaria (23 cm
long � 15 cm wide � 17 cm high) for at least 2
weeks. Water was changed twice weekly and an
air stone was used to provide constant aeration
of water in the aquarium. After the isolation
period, size-matched male crayfishes were
paired in a testing aquarium (same size as the
isolated aquaria). The animals were free to in-
teract at all times during a 10 d pairing period.
Two shelters were provided for each pair after
the first 6 h of interaction. A digital camcorder
(Panasonic) recorded the agonistic interactions
(attacks, approaches, defensive and offensive tail
flips, and retreats) for each pair during the first
hour of interaction. Animal posture was also an-
alyzed and an instantaneous score was calcu-
lated (0 � lowest, 5 � highest totally extended
legs). This instantaneous postural score was
then integrated over the observation time to
obtain a posture index. For the remaining 9 d,
the pairs were observed for 30 min in the
morning (crayfish peak activity time) and the
number and type of aggressive and submissive
behaviors were noted. Dominance between
two animals was determined based on the fraction of aggressive and
submissive behavior each animal performed as described previously (Issa
et al., 1999). Typically, after the 10 d pairing period, a crayfish was labeled
“dominant” when it regularly presented a significantly larger number of
approaches and attacks than the other, which was labeled “subordinate.”
Conversely, the subordinate animal presented a significantly larger num-
ber of retreats and defensive tail flips than the dominant. During the 30
min of observation after the hierarchy was formed, the number of re-
treats and tail flips of the dominant and the number of approaches and
attacks of the subordinate were both close to zero. Moreover, when the two
animals faced each other, the dominant adopted a high posture, while the
subordinate displayed a lower posture. In the present report, we only used
pairs in which the dominant systematically won all the fights during the last
days of pairing. Only intermolt animals (not engaged in the molting process)
that presented such clear social status differences (dominants and subordi-
nates) were used in this study.

In vitro preparation. An in vitro preparation of the thoracic nervous
system was used (Sillar and Skorupski, 1986; El Manira et al., 1991).
Before dissection, each animal was chilled in ice water for 30 min. Then it
was decapitated and the thorax and abdomen were pinned dorsal side up.
A section of the ventral nerve cord containing the last three thoracic
(T3–T5) and the first abdominal (A1) ganglia was dissected out with all
the nerves of the two proximal segments of the left fifth leg (Fig. 1 A). The
coxo-basipodite chordotonal organ (CBCO), which monitors the move-
ments of the second joint (coxo-basipodite), was also dissected out and
kept intact. The distal end of its elastic strand was attached to an electro-
magnetic puller VT101 (Ling Dynamic Systems) controlled by a home-
made function generator that allowed the application of sine-wave
movements to the CBCO strand to mimic upward (during stretch) and
downward (during release) movements of the leg.

The preparation was pinned dorsal side up on a Sylgard-lined Petri
dish (Dow Corning). The nervous system was continuously superfused
with oxygenated control saline containing the following (in mM): 195
NaCl, 5 KCl, 13 CaCl2, 2 MgCl2, and 3 HEPES (Sigma Chemical) with a
pH of 7.65. The fourth and fifth ganglia were desheathed to improve the
superfusion of the central neurons and to allow for intracellular record-
ings (Fig. 1 A, B). In some experiments, a high divalent cation solution
containing 34 mM CaCl2 and 6.4 mM MgCl2, with the sodium concentra-
tion reduced accordingly to preserve the osmolarity of the solution, was
used to raise the spiking threshold of the interneurons.

5-HT application. The CNS was insulated from the CBCO by a Vase-
line wall (Fig. 1 A) to restrict the superfusion of 5-HT to the ganglia. At

the same time, the CBCO was superfused with control saline. In the
Vaseline well, the level of saline was kept as low as possible to allow
fast change of saline. 5-HT was stepped to full concentration as rap-
idly as possible (within 1 min). Estimations of the rate of change were
made by replacing 5-HT solutions with salt solutions and measuring
conductance.

The animal was chilled in ice water before and during the dissection.
Therefore, in vitro preparations of the thoracic nervous system generally
did not display spontaneous activity in the minutes following the dissec-
tion. However, after 20 – 40 min rest in oxygenated saline at 17°C, spon-
taneous activity generally recovered. In all experiments, nerve recordings
were performed after 1 h of rest.

Recordings. Extracellular recordings from the motor nerves innervat-
ing the depressor levator, promotor, and remotor muscles and from the
sensory nerve of the CBCO were made using stainless steel pin electrodes
contacting the nerves and insulated with Vaseline (Fig. 1 A). Intracellular
recordings from depressor MNs (Fig. 1 B) were performed with glass
micropipettes (Clark Electromedical Instruments) filled with 3 M KCl
(resistance, 10 –20 M�) and connected to an Axoclamp 2B amplifier
(Molecular Devices) used in the current-clamp mode. In crustacea, the
somata of MNs lie outside of the neuropile (the region in which neurons
form their synaptic contacts) (Fig. 1 B) and are linked to the arbor of the
neuron by a thin neurite, and so do not participate in the electrical
activity of the neuron. For these reasons, intracellular recordings were
made from the main neurite where EPSPs could be recorded (Fig. 1 B).

Depressor MNs were identified following the procedure described in
Hill and Cattaert (2008). The resting membrane potential of MNs was
usually in the range of �78 to �65 mV. Stability of resting membrane
potential over a long period of time (�4 h) was used as a criterion for
evaluation of cell health during recordings. In crustacean MNs, soma and
neurites do not actively convey spikes. Therefore, spike amplitude was
generally small (�20 mV) at the recording site. Data were digitized and
stored onto a computer hard disk through an appropriate interface
(1401plus) and software (Spike2) from Cambridge Electronic Design.

Data analysis. Data were analyzed using the Spike2 analysis software.
Spikes recorded from the CBCO nerve were discriminated according to
their waveform based on a template matching protocol (wavemark).
Templates were built automatically and corresponded to the mean du-
ration of sensory spikes (�1.5 ms in duration). The sampling rate for
CBCO nerve recording was set to 15 kHz, which resulted in templates
containing 20 –22 points. The procedure used two criteria to identify a
spike: (1) �90% of the points should be in the confidence limits of the
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Figure 1. In vitro preparation for the study of the resistance reflex of the second leg joint of the crayfish. A, The in vitro
preparation of the crayfish thoracic locomotor system consists of thoracic ganglia 3–5 (T3, T4, T5) and the first abdominal ganglion
(A1) dissected out together with motor nerves of the proximal muscles (Pro n, promotor; Rem n, remotor; Lev n, levator; Dep n,
depressor) and the CBCO, a proprioceptor that encodes the vertical movements of the leg. A mechanical puller allowed us to mimic
the vertical movements (mvt) of the leg by stretching and releasing the CBCO strand. The CNS was isolated from the CBCO by a
Vaseline wall to superfuse only the ganglia with 5-HT (10 �M). Single or multiple intracellular recordings from motoneurons were
performed within the neuropile with glass microelectrodes (ME). B, Disposition of the glass microelectrode used for intracellular
recording from depressor MNs. The recording microelectrode was placed in the main neurite.
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template; and (2) the maximum amplitude change for a match was �5%.
This procedure was applied off-line. After the completion of this protocol,
each identified CBCO unit (spike shape) was assigned an arbitrary number.
Subsequently, a spike-triggered average was performed for each CBCO unit,
allowing us to observe in a given MN the occurrence of any postsynaptic
events related to this unit. Statistical analyses were done with Prism (Graph-
pad Software). The results are given as mean values � SEM.

Results
The level of tonic activity of leg MNs depends on the animal’s
social status
We performed systematic recordings of the depressor nerve ac-
tivity in in vitro preparations from dominant and subordinate
animals throughout the experiment. The total activity recorded
from the depressor nerve was measured. This spontaneous activ-

ity was distributed among the 21 prepara-
tions from dominant animals (Fig. 2A,
left). One was silent, four displayed a low
level (�1 Hz) of tonic activity, and the
other 16 preparations displayed sponta-
neous activity with firing rates ranging
from 3 to 74.9 Hz. Among these, 10 were
purely tonic, five displayed a tonic activity
with slow weak rhythmic modulation (pe-
riod 20 – 40 s), and one was slowly rhyth-
mic (period 20 – 40 s). In all cases, the
mean rate of activity was calculated over a
period of 5 min to avoid problems of mea-
surements due to pseudorhythmic activi-
ties. By contrast, in subordinate animals,
the level of spontaneous activity was sig-
nificantly lower (Fig. 2A, right) (Mann–
Whitney test, p � 0.019), with four
preparations silent, three displaying a low
level (�1 Hz) of tonic activity, and nine
displaying a moderate level of activity in
the range 1–10 Hz. Only two preparations
displayed tonic activity in the range 45–50
Hz. Only one subordinate-animal prepa-
ration displayed spontaneous rhythmic
activity. These data show that spontaneous
activity of the depressor nerve in subordi-
nate and dominant-animal preparations
differed significantly in their spontaneous
firing rates and in the frequency distribu-
tion of firing rates (Fig. 2B,C). In the
dominant-animal preparations, firing rates
decreased monotonically from 0 to 80 Hz,
following a decreasing exponential curve
(R 2 � 0.97) (Fig. 2B), whereas in subor-
dinate preparations, 10% displayed firing
rates �20 Hz and 90% presented a low
firing rate (�10 Hz) (Fig. 2C).

To test whether the effect of animal’s
social status was specific to depressor MN
activity or not, the same analysis was also
done in experiments in which the activity
of proximal motor nerves to promotor,
remotor, levator, and depressor muscles
(Fig. 1) was recorded in the in vitro prep-
aration (Fig. 2D,E and Table 1). In the 16
experiments analyzed (eight dominant
and eight subordinate animals), the re-
sults confirm that the tonic activity of the

depressor nerve in dominant animals (7.66 � 3.51 spikes/s,
mean � SEM; n � 8) was significantly higher (Mann–Whitney
test, p � 0.0103) than in subordinate animals (1.02 � 0.51
spikes/s, mean � SEM; n � 8). Moreover, in dominant animals,
the tonic activities of the levator nerve (8.77 � 3.89), promotor
nerve (21.1 � 6.95), and remotor nerve (3.30 � 1.04) were also
higher than in corresponding nerves in subordinate animals (leva-
tor, 1.71 � 0.99; promotor, 9.91 � 3.45; and remotor, 0.51 � 0.25).
The levator/remotor difference was significant (Mann–Whitney
test, p � 0.0148 and 0.014, respectively), but the promoter/remoter
difference, while close, failed to reach significance (Mann–Whitney
test, p � 0.0524) (Fig. 2E). This lack of significance is likely due to
the fact that promotor discharge was generally higher than in
other motor nerves, with a larger variability both in dominant
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Figure 2. Tonic activity recorded in vitro from the depressor nerve of dominant and subordinate crayfishes. A, Individual firing
rates calculated from depressor global nerve activity from 21 dominant- and 17 subordinate-animal preparations. B, C, Frequency
distribution of the depressor nerve firing rate in dominant-animal preparations (B) and subordinate-animal preparations (C). D, E,
Individual firing rates of depressor (Dep), levator (Lev), promotor (Pro), and remotor (Rem) motor nerves from eight dominant (D)
and eight subordinate (S) animal preparations (D) and statistical analysis of firing rates calculated over all dominants and all
subordinates for depressor, levator, promotor, and remotor motor nerves (E). *p � 0.05, Mann–Whitney test. Vertical bars
represent SEM. ns, Not significant.
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(SEM � 6.95) and in subordinate animals
(SEM � 3.45) (Fig. 2D). Moreover, like
the depressor nerve activity over the 21
experiments (Fig. 2A), the variation in the
frequencies of tonic promoter activity was
also larger in the eight dominant animals
than in the eight subordinate animals
(Fig. 2D).

The large variation in the tonic firing
rates of the depressor motor nerve in
dominant animals could have been re-
lated to their social experience. To test this
hypothesis, we quantified several behav-
ior variables of dominant crayfish (rate of
approaches, rate of attacks, fight duration,
and posture index) and calculated their
correlation with the corresponding in
vitro firing rate of depressor MNs. No cor-
relation was found between the in vitro
depressor firing rate and the number of
approaches and attacks per minute, the
fight duration, or the posture index.

The effect of 5-HT on tonic
activity of depressor MNs is
social status dependent
When applied to in vitro preparations
from dominant animals, 5-HT (10 �M)
increased the depressor nerve firing rate
to a plateau level within 4 –5 min of per-
fusion (Fig. 3A). 5-HT exposure was
maintained for 10 min, after which the
preparation was washed with saline. How-
ever, the level of tonic firing remained
largely above the control value for up to 40
min, gradually decreasing to reach a level
generally lower than control after 50 min
of wash. By comparison, when 10 �M

5-HT was applied to preparations from
subordinate animals, the tonic discharge
also increased in some preparations, but
with two differences. First, no sustained
plateau of activity was observed during
the wash; the level of activity decreased as
soon as 5-HT was washed from the bath
(Fig. 3B1). Second, even after 1 h wash, the
tonic activity was still above the control
value and generally never went back to its
control value even after 2 h wash. Note
that in preparations that did not display
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Figure 3. Effect of 10 �M 5-HT on depressor nerve tonic activity. A, B, Raw data of depressor nerve recording during 5-HT
application (horizontal bar) in preparations from dominant (A) and subordinate (B) animals. The frequency (Freq) of the global
depressor nerve (Dep n) activity (gray) is presented above each depressor nerve recording (black). Two recordings from
subordinate-animal preparations are presented: one with a low level of tonic activity (B1) and one totally silent before 5-HT
application (B2). C, Mean firing rates of the depressor nerve measured from eight dominant animals (left) and eight subordinate
animals (right) in control situation after 10 min of 5-HT and after a 50 min rinse. D, Statistical analysis of the data presented in C.
Vertical bars represent SEM. **p � 0.01.

Table 1. Statistical analysis of spontaneous activity (in hertz) in depressor, levator, promotor, and remotor nerves in dominant and subordinate crayfishes

Dep Lev Pro Rem

Dom Sub Dom Sub Dom Sub Dom Sub

Mean 7.66 1.02 8.77 1.71 25.1 9.91 3.30 0.51
SE 3.51 0.61 3.89 0.99 6.95 3.45 1.04 0.25
No. of nerves 8 8 8 8 8 8 7 8
p 0.010 0.015 0.052 0.014

For each motor nerve, the p value of the Mann–Whitney test indicates a significant difference between dominant and subordinate animals. Dep, Depressor; Lev, levator; Pro, promotor; Rem, remotor; Dom, dominant; Sub, subordinate.
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any spontaneous depressor activity (Fig. 3B2), the application of
10 �M 5-HT could result in a very low-frequency depressor ac-
tivity (�0.2 Hz) limited to the duration of 5-HT application (Fig.
3B2). The results of all experiments performed from dominant
(n � 8) and subordinate (n � 8) animals are presented in Figure
3C and Table 2. The application of 5-HT systematically produced
a significant increase in the tonic discharge firing rate in dominant-
animal preparations (Fig. 3C, left), whereas in subordinate-animal
preparations, the effects of 5-HT were variable (Fig. 3C, right). 5-HT
application produced small activity increases in some subordinate
preparations, had no effect in others, and suppressed 3.15 Hz tonic
activity in one preparation. Spontaneous activity was restored in
that preparation after 30 min wash. Statistical analysis (Fig. 3D)
confirmed that 5-HT (10 �M) elicited a significant increase of the
depressor tonic discharge (Wilcoxon matched pairs test, n � 8, p �
0.0039) in dominant-animal preparations (Fig. 3D, left). This effect
was reversed within 1 h after rinse (Wilcoxon matched pairs test, n �
8, p � 0.0078). By contrast, no significant increase of the depressor
tonic discharge (Wilcoxon matched pairs test, n � 8, p � 0.05) was
induced by 10 �M 5-HT in subordinate-animal preparations (Fig.
3D, right).

The effect of 5-HT on the depressor tonic activity (Fig. 3) was
also observed in the other motor nerves analyzed (Table 2). In
dominant animals, 5-HT induced a significant increase in pro-
motor (from 25.10 � 6.95 Hz to 48.54 � 17.54 Hz, p � 0.0039,
Wilcoxon matched pairs test), remotor (from 3.30 � 1.04 Hz to
20.26 � 9.67 Hz, p � 0.0078), levator (from 8.77 � 3.89 Hz to
22.61 � 8.06 Hz, p � 0.039), as well as depressor (from 7.66 �
3.51 Hz to 21.15 � 8.77 Hz, p � 0.039) motor nerves. By contrast,
in subordinate animals, 5-HT did not induce any significant
change in these motor nerves (Table 2).

The efficacy of the resistance reflex depends on social status
The CBCO strand is stretched during opening of the coxo-basal
joint and released during closure, which corresponds to down-
ward and upward movements of the leg, respectively. Among the
40 sensory neurons innervating the CBCO, 20 stretch-sensitive
neurons code for leg depression and 20 release-sensitive neurons
code for leg levitation. Because the axons of these two groups of
CBCO neurons travel in the CBCO nerve, the application of sine-
wave movements to the CBCO strand induced a sensory dis-
charge during both stretch and release movements (Fig. 4A,B).
This sensory information is conveyed to the ganglion where
stretch-sensitive neurons directly excite levator MNs and release-
sensitive neurons directly excite depressor MNs (El Manira et al.,
1991) These monosynaptic connections are responsible for the

resistance reflex. In this study, we have analyzed the effects of
5-HT and social status on this reflex.

Sinusoidal movements were applied to the CBCO strand, the
activity of the depressor nerve was recorded, and the global firing
rate (multiple units) of the depressor nerve activity was then
calculated. The sinusoidal movement of the CBCO strand re-
sulted in a resistance reflex response recorded in the depressor
nerve (Fig. 4A1); each time the strand was released (correspond-
ing to upward movement of the leg in an intact animal), the
depressor nerve firing increased. In control situations, domi-
nant-animal preparations displayed a significantly higher depres-
sor nerve firing rate during sine-wave movements applied to the
CBCO strand than subordinate-animal preparations (Mann–
Whitney, p � 0.046). The resistance reflex response was obvious
in dominant-animal preparations, which had significantly higher
firing rates during release movements than during stretch move-
ments (Fig. 4A1, histogram). In three of eight subordinate-
animal preparations, the reflex response was not visible in the
absence of 5-HT (Fig. 4B1). In addition, the frequency distribu-
tion of the resistance reflex firing rates was different in dominants
and subordinates. In dominant-animal preparations, reflex firing
rates ranged from 0.24 Hz to 115.56 Hz, with a linear decrease of
occurrences from 46.2% of low (�15 Hz) firing rates to 8% of
high (�105 Hz) firing rates. By contrast, in subordinate-animal
preparations, 83% of the reflex firing rates were low (�15 Hz).

The effect of 5-HT on the efficacy of the resistance reflex is
social status dependent
We found that 5-HT (10 �M) increased the resistance reflex in
dominant-animal preparations (Fig. 4A). The mean firing rate of
depressor nerve activity calculated over the whole movement cy-
cle increased from 2.46 Hz in the control situation (Fig. 4A1) to
11.17 Hz (354% increase) 20 min after the beginning of perfusion
of 10 �M 5-HT (Fig. 4A2). This increased reflex response was not
due to an increase in the CBCO sensory activity, which stayed
fairly consistent throughout the experiment. Although the CBCO
discharge was slightly variable (Fig. 4A1,A2, CBCO nerve raw
data recording and CBCO mean frequency), the number of
spikes per movement cycle did not increase significantly (1192 �
6.0 in control condition, 1212 � 7.1 in the presence of 5-HT, n �
10 cycles, p � 0.05, t test). In subordinate-animal preparations,
application of 10 �M 5-HT increased the depressor reflex activity
much less than in dominant-animal preparations. For example,
the mean firing rate of depressor nerve activity increased from
3.49 Hz in the control situation (Fig. 4B1) to 5.01 Hz after 10 min

Table 2. Statistical analysis of effect of 5-HT on spontaneous tonic activity (in hertz) in depressor, levator, promotor, and remotor nerves in dominant and subordinate
crayfishes

Dep Lev Pro Rem

Control 5-HT Control 5-HT Control 5-HT Control 5-HT

Dominant animals
Mean 7.66 21.15 8.77 22.61 25.1 48.54 3.30 20.26
SE 3.51 8.77 3.89 8.06 6.95 17.54 1.04 9.67
No. of nerves 8 8 8 8 8 8 7 8
p 0.0078 0.0391 0.0039 0.0078

Subordinate animals
Mean 1.02 1.98 1.71 1.97 9.91 9.85 0.51 1.13
SE 0.61 1.53 0.99 0.71 3.45 3.59 0.25 0.83
No. of nerves 8 8 8 8 8 8 8 8
p 0.37 0.31 0.50 0.31

For each motor nerve, the p value of the Wilcoxon signed rank test indicates a significant difference between control and 5-HT conditions. Dep, Depressor; Lev, levator; Pro, promotor; Rem, remotor; Dom, dominant; Sub, subordinate.
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in the presence of 10 �M 5-HT, mainly
because of increases in the resistance re-
flex activity (Fig. 4B2, large amplitude
spikes).

A grouped analysis of the two factors
(5-HT treatment and social status) indi-
cates that the effect of 5-HT on resistance
reflex response depends on social status
[two-way ANOVA, F � 14.35, degrees of
freedom (DF) � 13, p � 0.0023]. Separate
analyses of 5-HT’s effects on the responses
of dominants and subordinates show that
the effect of social status results from a
5-HT-induced increase in the reflex re-
sponses of dominants and no 5-HT-
induced change in the reflex responses of
subordinates. 5-HT (10 �M) consistently
evoked a significant increase of the mean
firing rate of the depressor reflex dis-
charge in dominant-animal preparations
over all experiments (Wilcoxon matched
pairs test, p � 0.0078, n � 7) (Fig. 5A).
Although 5-HT evoked an obvious in-
crease of the reflex response of some
subordinate-animal preparations (Fig.
4B), no significant change was observed
over the entire set of subordinates (Wil-
coxon matched pairs test, p � 0.05, n � 7)
(Fig. 5A).

A similar analysis was made for the le-
vator motor nerve resistance reflex dis-
charge (Fig. 5B). A grouped analysis
indicates that the effect of 5-HT on the
levator resistance reflex response depends
on social status (two-way ANOVA, F �
5.90, DFd � 14, p � 0.029). Here again,
5-HT (10 �M) consistently evoked a sig-
nificant increase of the mean firing rate of
the levator reflex discharge in dominant-
animal preparations over all experiments
(Wilcoxon matched pairs test, p � 0.019,
n � 8), whereas in subordinate-animal
preparations, no significant change was
observed (Wilcoxon matched pairs test,
p � 0.05, n � 8) (Fig. 5B).

These results indicate that social status affects the sensory-
motor network involved in posture control and locomotion.
Tonic firing rates are higher in dominants than subordinates, and
5-HT increased that activity in dominants but not in subordi-
nates. Finally, 5-HT increased resistance reflex responses in dom-
inant but not in subordinate preparations. In the next part of the
study, we analyzed the mechanisms that were responsible for the
differential effects of 5-HT in dominant- and subordinate-animal
preparations.

The effects of 5-HT on depressor MN membrane potentials
depend on social status
In a series of experiments performed in dominant- and
subordinate-animal preparations, depressor MNs were intracel-
lularly recorded in control conditions and during application of
10 �M 5-HT (Fig. 6). In two of eight dominant-animal prepara-
tions, depressor MNs were spontaneously firing in the control
condition (Fig. 6A1). In these preparations, 5-HT induced a slow

tonic depolarization starting �1 min after application of 5-HT
and reached a maximum of 2– 4 mV in �5 min (Fig. 6A1). In the
intracellularly recorded depressor MN presented in Figure 6A1,
the depolarization reached 7.8 mV after 4 min in the presence of
10 �M 5-HT. Its tonic discharge firing rate increased from 0.14
Hz to 7.74 Hz after 4 min in the presence of 10 �M 5-HT. These
results are in accordance with the increase of firing frequency
observed in the depressor motor nerve (Fig. 3). After 1 h wash, the
firing rate of the spontaneous tonic activity was back to its control
value (data not shown). The membrane potential of depressor
MNs in control situations in most of the depressor MNs was in
the range of �78 to �72 mV (except for two spontaneously active
depressor MNs in which it was ��60 mV). To compare the effect
of 5-HT on membrane potential of these depressor MNs, we
adjusted their membrane potential to �78 mV in the control
condition by injection of a continuous constant current (Fig.
6A2,B2). In these conditions, the application of 10 �M 5-HT
induced a slow tonic depolarization in all depressor MNs re-
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corded from eight dominant-animal preparations and in seven of
eight subordinate-animal preparations with the same kinetics, as
in the example shown in Figure 6A. The amplitude of 5-HT-
induced depolarization was, however, generally smaller in
subordinate-animal preparations (in three recordings the ampli-
tude of the depolarization was �1 mV) (Fig. 6B,C). The average
depolarization induced by 10 �M 5-HT was 4.14 � 0.82 mV
(mean � SEM, n � 8) in dominant-animal preparations and only
1.9 � 0.52 mV (mean � SEM, n � 8) in subordinate-animal
preparations. This difference was significant (Mann–Whitney
test, p � 0.019).

The effects of 5-HT on depressor MNs reflex response is
social status dependent
When sine-wave movements were applied to the CBCO strand,
most depressor MNs displayed a resistance reflex response con-
sisting of a depolarization of membrane potential during the
release movement and a repolarization during the stretch move-
ment (Le Ray and Cattaert, 1997; Hill and Cattaert, 2008). The
amplitude of reflex responses induced in depressor MNs was
measured in dominant- and subordinate-animal preparations
(Fig. 7). In control conditions, the amplitude of the resistance
reflex response was generally larger in dominant-animal prepa-
rations (0.72 � 0.41 mV; mean � SEM, n � 5) (Fig. 7A) than in
subordinate-animal preparations (0.34 � 0.12 mV; mean �
SEM, n � 5) (Fig. 7B). Nevertheless, over all experiments, this

difference was not significant (Mann–Whitney, p � 0.05). How-
ever, the effects of 5-HT on the amplitude of the resistance reflex
response was opposite in dominant and subordinate prepara-
tions. For example, in the experiments reported in Figure 7A,B,
5-HT induced an increase of the resistance reflex response am-
plitude from 2.53 mV to 3.05 mV in the dominant-animal prep-
aration (Fig. 7A), whereas it induced a decrease of the resistance
reflex response from 0.56 mV to 0.36 mV in the subordinate-
animal preparation (Fig. 7B). The effect of 5-HT was generally
almost maximal after 4 min in the presence of 5-HT, and the
evolution of the reflex response in dominant- and subordinate-
animal preparations were mirror images (Fig. 7, compare C and
D). Note that, in the dominant-animal preparation, the variabil-
ity (SEM) of the reflex response decreased from 0.156 mV in the
control situation to 0.079 in the presence of 5-HT (Fig. 7C). By
contrast, in subordinate animals, the variability of the response
(SEM � 0.032 mV) did not change significantly during the
application of 5-HT (SEM � 0.038 mV) (Fig. 7D, error bars). Sim-
ilar results were obtained in six dominant and five subordinate-
animal preparations (Fig. 7E). Note that in subordinate-animal
preparations, tonic depolarization of MNs and decrease of reflex
response amplitude counteract each other and would be respon-
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sible for the nonsignificant effect of 5-HT
on the reflex discharges recorded from
motor nerves (Fig. 5). Although the mean
effect of 5-HT on reflex discharge is not
significant, the balance between 5-HT-
induced depolarization and reflex response
amplitude would be positive enough to
reach the threshold for spikes in some
subordinate-animal experiments (Fig.
4B2).

The effects of 5-HT on input
resistance of depressor MNs is
social status dependent
As was shown in communal animals, an
increase of the resistance reflex response
amplitude by 10 �M 5-HT in depressor
MNs can be achieved by an increase of
their input resistance (Le Bon-Jego et
al., 2004). Therefore, here we tested this
hypothesis by measuring the input resis-
tance of depressor MNs in a control situ-
ation and in the presence of 10 �M 5-HT
in eight dominant- and six subordinate-
animal preparations (Fig. 8). In the pres-
ence of 10 �M 5-HT, the input resistance
of depressor MNs significantly increased
in dominant-animal preparations (Wil-
coxon matched pairs test, p � 0.03, n � 6)
from 4.04 � 0.79 to 7.90 � 3.2 M�
(79.2% increase) (Fig. 8A). By contrast, in
subordinate-animal preparations, the in-
put resistance showed a tendency to de-
crease from 4.24 � 0.74 (control) to
2.69 � 0.43 M� (in the presence of
5-HT). However, this tendency was not
significant (Wilcoxon matched pairs test,
p � 0.05, n � 6). Over the six experiments
performed in subordinate-animal prepa-
rations in which the input resistance of
depressor MNs was measured, the appli-
cation of 5-HT decreased it (n � 4) (Fig.
8B) or did not change it significantly (n �
2). At the same time, we measured the
time constant of depressor MNs during
the recovery after injecting a �1 nA hyperpolarizing current
pulse (Fig. 8A,B). The curves were fitted with one exponential
decay time function (Fig. 8C,D). These measurements agreed
with the observations on input resistance. In dominant-animal
preparations, the time constant increased in the presence of 10
�M 5-HT [from 18.69 to 31.78 ms in the recording of the depres-
sor MN (Fig. 8C)], whereas in subordinate-animal preparations,
the time constant decreased in four of the six depressor MNs
analyzed (as did the input resistance). An example of a 5-HT-
induced decrease of time constant of a depressor MN in a subor-
dinate animal is presented in Figure 8B [from 17.8 to 14.5 ms in
the recording of the depressor MN (Fig. 8D)]. It is important to
note that the input resistances of dominant (4.04 � 0.79 M�, n �
8) and subordinate (4.24 � 0.74 M�, n � 5) depressor MNs
measured in control conditions were not significantly different
(Mann–Whitney test, p � 0.05), but their sensitivities to 10 �M

5-HT were significantly different (Fig. 8E). The input resistance
of depressor MNs of dominant-animal preparations (n � 6) in-

creased by 79.27% after 10 min in the presence of 10 �M 5-HT,
and increased further to 109.21% above control after a 20 min
rinse (Fig. 8E). By contrast, the input resistance of depressor MNs
of subordinate-animal preparations (n � 5) decreased by 19.12%
after 10 min in the presence of 10 �M 5-HT but recovered and
even increased slightly (17.47%) after 20 min rinse (Fig. 8E).
Statistical analysis (two-way ANOVA) of these data indicates that
the effect of 5-HT is extremely dependent on social status (F �
49.09, p � 0.0001). After 10 min in the presence of 5-HT and after
a 20 min rinse, the changes in input resistance were significantly
different in dominants and subordinates [Bonferroni’s post-test,
p � 0.001 (Fig. 8E)]. These observations were confirmed by the
statistical analysis (two-way ANOVA) of the effect of 10 �M 5-HT
on membrane time constant in dominant and subordinate
groups (Fig. 8F). The effect of social status on the differential sen-
sitivity of membrane time constant to 5-HT was extremely signifi-
cant (F � 34.30, p � 0.0001). After 10 min in the presence of 5-HT
and after a 20 min rinse, the changes in time constant were signifi-
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cantly different in dominants and subordinates [Bonferroni’s post-
test, p � 0.01 (Fig. 8F)].

The shape of EPSPs depends on social status
The shape of EPSPS were different in dominant- and subor-
dinate-animal preparations (compare Figs. 9A and 11A). In control
situations, the mean peak amplitude of EPSPs was 0.56 � 0.069 mV
over all unitary EPSPs (n � 39) recorded from depressor MNs in
dominant-animal preparations and 0.29 � 0.019 mV over all
unitary EPSPs (n � 28) recorded from depressor MNs in
subordinate-animal preparations. This difference was significant
( p � 0.002, unpaired t test). Moreover, the decay phase was
shorter in subordinates than in dominants. However, a direct fit
to an exponential was not possible because the EPSP decay phase
of dominants contained polysynaptic events (Le Bon-Jego et al.,
2004), which did not allow an estimation of the decay time. To

quantify the evolution of this late part of
the EPSPs, the amplitude was measured
15 ms after the EPSP peak (Fig. 9A, verti-
cal arrows). This late decay-phase ampli-
tude of dominant animals (0.16 � 0.02
mV, n � 39) was significantly larger ( p �
0.0001, unpaired t test) than that of sub-
ordinate animals (0.04 � 0.01, n � 28).
This observation may have important func-
tional consequences concerning the capa-
bilities of EPSP summation in the resistance
reflex response, which would be much
smaller in subordinates (short decay time)
than in dominants (large decay time). This
is likely the reason why three of eight
subordinate-animal preparations did not
display any resistance reflex responses in the
depressor motor nerve (Fig. 4B1).

The effects of 5-HT on synaptic
transmission from CBCO
terminals to depressor MNs
is social status dependent
The social status-dependent effect of 10
�M 5-HT on the amplitude of the resis-
tance reflex response recorded in depres-
sor MNs was further analyzed by studying
the evolution of unitary sensory-motor
PSPs in depressor MNs. These measure-
ments were done in the absence of move-
ment applied to the CBCO strand to avoid
summation effects altering the shape of
individual EPSPs (Le Bon-Jego et al.,
2004). During the entire experiment, each
of the spikes recorded from the CBCO
nerve were classified according to their
shape, using the spike sorting analysis
program provided by Spike2 software.
Then each spike shape was used to per-
form spike trigger averaging of intracellu-
larly recorded depressor MNs to identify
unitary EPSPs and IPSPs in control situa-
tion, during application of 10 �M 5-HT,
and during wash. The results of this anal-
ysis is presented in Figures 9 and 10 for
EPSPs and IPSPs, respectively, recorded
from depressor MNs of dominant-animal

preparations, and in Figures 11 and 12 for EPSPs and IPSPs recorded
from depressor MNs of subordinate-animal preparations.

In dominant-animal preparations in the presence of 5-HT (10
min), the sensory EPSPs shapes displayed two changes illustrated
in the recording of the seven unitary EPSPs recorded from a given
depressor MN (Fig. 9). First, the peak amplitude of some EPSPs
increased (Fig. 9A). This increase continued after a 50 min wash
(Fig. 9A) and was significant (Mann–Whitney test, p � 0.0001 for
units 5, 6, 9, 16, 17; p � 0.05 for unit 15) for six of the seven
unitary EPSPs (Fig. 9B). For the remaining unitary EPSP (unit 1),
a nonsignificant increase was observed ( p � 0.05, Mann–Whit-
ney test) (Fig. 9B). The average peak amplitude over all seven
unitary EPSPs was significantly increased ( p � 0.0021, paired t
test) (Fig. 9B). Second, the decay time of some EPSPs increased
(Fig. 9A), likely due to the presence of polysynaptic EPSPs. Note
that, as was the case for the peak amplitude, the decay time also
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continued to increase even after a 50 min wash. To quantify the
evolution of this late part of the EPSPs, the amplitude was mea-
sured 15 ms after the EPSP peak (Fig. 9A). These late-decay-phase
EPSPs significantly increased (Mann–Whitney test, p � 0.0001,
p � 0.001, and p � 0.01) in three of the seven unitary EPSPs (Fig.
9C). The average increase of the amplitude over the seven unitary
EPSPs was nevertheless significant ( p � 0.0008, paired t test)
(Fig. 9C). This analysis was repeated in four experiments (a total
of 39 EPSPs were analyzed). The effects of 5-HT on peak ampli-
tude (Fig. 9D) and late decay phase (15 ms after EPSP peak) (Fig.
9E) were measured after a 50 min wash and compared with con-
trol values. The peak amplitude of 34 of 39 EPSPs was increased
by 5-HT (Fig. 9D), and the late decay-phase amplitude was also
increased by 5-HT in 22 of 39 EPSPs (Fig. 9E). The average in-
crease of the peak amplitude was highly significant ( p � 0.0003,
paired t test) (Fig. 9F), as was the average increase of the late

decay phase ( p � 0.0015, paired t test) (Fig. 9F), although this
effect was more variable among individual unitary EPSPs (Fig.
9E). In the presence of a high-divalent cation solution, the effect
of 10 �M 5-HT on peak EPSPs did not change significantly in
dominant-animal preparations, but the slope of the decay time
was decreased to the control value and the polysynaptic compo-
nents of unitary EPSPs were suppressed (data not shown). This
result indicates that, in dominant animals, the increased duration
of EPSP decay phase was essentially due to polysynaptic pathways
activated by 5-HT. These results are very similar to previous find-
ings in communal animals (Le Bon-Jego et al., 2004).

In addition, the peak amplitude of unitary sensory IPSPs fol-
lowed a very similar change in dominant animals: their ampli-
tude increased in the presence of 5-HT and during wash (Fig.
10A). In the experiment presented in Figure 10A–C, the peak
amplitude increase was highly significant for the four identified
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IPSPs ( p � 0.0001, Mann–Whitney test), as was the average
increase of these four units ( p � 0.0001, paired t test) (Fig. 10B).
However, unlike for EPSPs, the decay phase of individual unitary
IPSPs was not significantly modified by 5-HT ( p � 0.05, Mann–
Whitney test), nor was the average over all IPSPs ( p � 0.05,
paired t test) (Fig. 10C). IPSPs were identified in three experi-
ments. The peak amplitude of 12 of these 13 unitary IPSPs was
increased by 5-HT (Fig. 10D), whereas the late decay phase was
decreased for eight of 13 unitary IPSPs and increased for the
remaining five unitary IPSPs (Fig. 10E). The average increase of
the peak amplitude over all IPSPs was significant ( p � 0.0188,
paired t test), whereas the absence of significant effect on the
decay phase was confirmed over the 13 identified IPSPs ( p �
0.05, paired t test) (Fig. 10F, right).

By contrast, in subordinate-animal preparations, very few
changes were observed. A typical example of unitary EPSPs iden-
tified in a depressor MN in a subordinate-animal preparation is
presented in Figure 11A–C. Among the eight unitary EPSPs iden-
tified in this experiment, seven presented no significant change in
peak amplitude after 5-HT application ( p � 0.05; Mann–Whit-
ney test) and one presented a significant decrease (unit 15; p �
0.0188, Mann–Whitney test) (Fig. 11B). The average effect of
5-HT on the peak amplitude over the eight units was not signif-

icant ( p � 0.05, paired t test) (Fig. 11B). The EPSP decay phase
was not significantly changed by 5-HT ( p � 0.05, Mann–Whit-
ney test) (Fig. 11C) in seven of the eight unitary EPSPs identified
in this experiment. One unitary EPSP (unit 3) presented a signif-
icant decrease ( p � 0.05, Mann–Whitney test) (Fig. 11C). The
average effect of 5-HT over the eight unitary EPSPs was not sig-
nificant ( p � 0.05, paired t test) (Fig. 11C).

All unitary EPSPs identified in depressor MNs from subordinate-
animal preparations were similarly analyzed. The peak amplitude of
15 of the 28 EPSPs was increased after 5-HT application (Fig. 11D).
However, the average effect over all EPSPs increase was not signifi-
cant ( p � 0.05, paired t test) (Fig. 11F). Similarly, the late decay-
phase amplitude was not significantly modified by 5-HT ( p � 0.05,
paired t test) (Fig. 11F), reflecting the fact that the late decay-phase
amplitudes were very variable among individual unitary EPSPs (Fig.
11E). The reduction of the decay phase was observed in the largest
EPSPs recorded from MNs in subordinate-animal preparations (Fig.
11E). This result could explain why the amplitude of the reflex re-
sponse is smaller in these MNs (Fig. 7B,D,E), if we consider that
these EPSPs with long decay phase contributed most to the reflex
response amplitude.

Very few IPSPs were identified in the depressor MNs from
subordinate-animal preparations. Only four IPSPs were identi-
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fied in one experiment (Fig. 12). As was the case for EPSP, in
subordinate-animal preparations, the average peak amplitude of
the unitary IPSPs did not display any significant changes after
5-HT application ( p � 0.05, paired t test), although the ampli-
tude of one unitary IPSPs (unit 10) was significantly reduced after
5-HT application ( p � 0.01, Mann Whitney test) (Fig. 12B).
Similarly, the average late decay-phase amplitude did not display
any significant change after 5-HT application ( p � 0.05, paired t
test), although two presented a significant decrease ( p � 0.01,
Mann–Whitney test) (Fig. 12C) after 5-HT application.

Discussion
During the formation of a social hierarchy by crayfish, several behav-
ior features are modified, including the excitabilities of different es-
cape tail flip behaviors (Krasne et al., 1997; Herberholz et al., 2001)
and the response to unexpected unilateral touch of the abdomen
(Song et al., 2006). Analysis of the neural responses that mediate
escapes revealed status-dependent differences in the stimulus
thresholds of the LG and medial giant command neurons and the
nongiant circuits that trigger the different types of escape. Moreover,
serotonergic neuromodulation of the LG escape circuit also depends
on the social status (Yeh et al., 1996; Teshiba et al., 2001). In the
present study, we demonstrated that both excitability and 5-HT
modulation of the walking leg postural circuit depends on social
status too, thereby generalizing the effects of social interactions on
motor systems.

Basal tonic activity and resistance reflex intensity depend on
social status
Walking leg MNs in dominant-animal preparations demon-
strated a higher spontaneous tonic activity than in subordinate
animals. What are the physiological mechanisms mediating this
increased tonic activity? We did not find any significant differ-
ence in resting membrane potential of depressor MNs, although
they displayed a tendency to be more depolarized in dominant-
animal preparations than in subordinate-animal preparations.
The input resistance of these MNs was not significantly different
in both status groups either. It is therefore possible that the dif-
ference in depressor MNs’ tonic discharge [and other MN activity
as well (Fig. 2D,E)] was due to the interneuronal drive being
different in the two social phenotypes.

It may also be due to a higher sensitivity to sensory inputs.
Indeed, we demonstrated that reflex discharge was higher in
dominant-animal preparations than in subordinate-animal
preparations. However, no significant difference was found in the
level of sensory discharge in both groups. This observation indi-
cates that CBCO-depressor MNs sensory-motor pathways are
more effective in dominant than in subordinate crayfish. This
increased efficacy of the resistance reflex was not associated with
a relative increase in the input resistance of MNs in dominant
animals compared with subordinate animals. The shape of uni-
tary EPSPs triggered by sensory spikes from CBCO is significantly
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different in dominant and subordinate animals, with EPSP decay
phase being highly significantly shorter in subordinates (com-
pare Figs. 9A and 11A).

The effects of 5-HT on walking leg postural circuits depend
on social status.
The application of 5-HT on walking leg postural circuits induced
clearly different effects in subordinate and dominant animals
(Figs. 3–12). Moreover, the excitatory effects were highly signif-
icant only in dominant animals (Figs. 3D, 6A, 8E,F, and 9F,G),
whereas 5-HT had no significant effects in subordinate animals.

The 5-HT neuromodulation has also proved to depend on
social status in other systems, such as the LG escape circuit, where
application of 50 �M 5-HT caused facilitation of synaptic trans-
mission to LG in dominants and depression in subordinates (Yeh
et al., 1996, 1997). As was reported for socially isolated crayfish,
the effect of applied 5-HT on LG escape circuits depends on the
rate of 5-HT’s application, as well as on its concentration and the
animal’s social status (Teshiba et al., 2001). Both a low concen-
tration (5 �M) applied quickly (full concentration achieved in �2
min) and a high concentration (50 �M) applied slowly (full con-
centration in 25 min) facilitated LG’s response in social isolates,
whereas the same high concentration applied quickly was inhib-
itory. In our experiments on the walking leg motor neurons from
dominant animals, 5-HT (10 �M) was applied quickly, and its
facilitating effects are like those of 5 �M 5-HT on LG responsive-
ness in socially isolated animals.

Socially dominant animals across phyla demonstrate their
dominance through higher, more prominent postures and a
more active engagement with their social and environmental sur-
roundings. Conversely, subordinates tend to display lower, less
visible postures and to retreat from the same stimuli that elicit
confrontation in dominants (Darwin, 1873; Wilson, 1975). Here
we have demonstrated that these behavioral differences in cray-
fish (Edwards et al., 2003) are reflected in the tonic activity levels,
reflex responsiveness, and sensitivity to applied serotonin of the
leg depressor and levator motor neurons that determine the animal’s

posture. These and other recent results show
that the effect of social dominance status on
the nervous system is widespread, affecting
circuits that mediate behavioral switches
(Krasne et al., 1997; Herberholz et al., 2001),
postural circuits, including leg motor neu-
rons that determine posture, and the differ-
ent effects of neuromodulators like 5-HT
that modulate the excitability of neurons
throughout the nervous system (Yeh et al.,
1997; Spitzer et al., 2005).

Analysis of 5-HT’s effects on LG con-
cluded that they occur through at least
two distinct competitive pathways (Lee et
al., 2008). In isolated crayfish, the path-
way leading to facilitation involves pKA
signaling whereas non-cAMP/PKA sig-
naling pathways mediate inhibition (Lee
et al., 2008). Moreover, experiments with
5-HT receptor agonists suggested that the
different effects of 5-HT on LG excitabil-
ity resulted from a difference in the bal-
ance of 5-HT receptors in dominant and
subordinate animals (Yeh et al., 1997). Fa-
cilitation at mammalian and Aplysia syn-
apses appears to be mediated by receptors

that recruit cAMP/PKA or PKC signaling, similar to 5-HT4 and
5-HT2 receptors, respectively, in mammals (Nishimura and
Akasu, 1989; Hori et al., 1996; Li and Zhuo, 1998; Cai et al., 2002;
Shay et al., 2005; Rygh et al., 2006; Huang and Kandel, 2007). It is
possible that similar competing pathways exist in the walking leg
postural circuit of dominant animals. Moreover, as in LG, it is
possible that differences in the expression of 5-HT-receptors ac-
count for the different effects of 5-HT on depressor motor neu-
rons in dominant and subordinate animals.

Multiple mechanisms involved in 5-HT’s effects on walking
leg postural circuits
In the present work, we demonstrated that 5-HT (10 �M) pro-
duced a significant increase of the resistance reflex amplitude
recorded in depressor MNs from dominant but not from subor-
dinate animals (Fig. 7A). This increase was produced by multiple
effects that act cooperatively. The application of 5-HT (10 �M)
induced the following: (1) a tonic depolarization in depressor
MNs (Fig. 6), (2) a significant increase of the input resistance of
depressor MNs (Fig. 8), and (3) a change in the shape of unitary
EPSPs triggered by CBCO sensory units; their amplitude and their
decay time increased while polysynaptic EPSPs were recruited (Fig.
9). The systematic involvement of polysynaptic pathways in the
presence of 5-HT would explain the decrease of variability of the
reflex response compared with control condition in which polysyn-
aptic pathways are more randomly active (Fig. 7C).

Multiple facilitatory effects of low concentration of 5-HT (5 �M)
were also shown to influence the LG escape circuit of socially isolated
crayfish (Antonsen and Edwards, 2007), consisting mainly of an
increase of LG input resistance and an increase of electrical synaptic
conductance. As was already shown for the walking leg postural
circuit, the increased input resistance and increased EPSP decay time
induced by 5-HT both contribute substantially to the increased re-
sistance reflex and the depolarizing response recorded in depressor
MNs (Le Bon-Jego et al., 2004). The tonic depolarization of the
depressor MNs would also enhance their reflex response as the mus-
carinic component of the sensory synaptic inputs was activated (Le
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Bon-Jego et al., 2006). This muscarinic current is voltage dependent
and activated by the cholinergic CBCO–MN synapse. It increases the
amplitude of the resistance reflex response when the membrane po-
tential reaches its threshold of activation (Le Bon-Jego et al., 2006).
Note that activation of the voltage-dependent muscarinic current
was prevented by a constant negative current injection that counter-
acted the 5-HT-induced tonic depolarization; without current injec-
tion, the muscarinic currents would add to the 5-HT-induced
increase in the resistance reflex response. In dominant crayfish, the
5-HT-induced tonic depolarization is large enough to reach the
threshold (�60 mV) for the muscarinic component of the sensory-
motor synapse. The fact that depolarization was always much
smaller (when present) in subordinate crayfish than in dominant
animals would also contribute to the absence of increase of the resis-
tance reflex response amplitude observed in subordinate-animal
preparations.

Relationship to behavior
We have found that both tonic motorneuron activity and pos-
tural resistance reflexes are greater in dominant than in subordi-
nate preparations, and are enhanced by 5-HT in dominant but
not in subordinate preparations. What are the behavioral conse-
quences of these differences? The higher tonic activity suggests
that dominants maintain a higher postural tone than subordi-
nates, and that this tone and reflex gain are increased by the
release of 5-HT. Dominant crayfish have been associated with
characteristic elevated postures and subordinate crayfish with
lowered postures (Livingstone et al., 1980; Kravitz, 1988); how-
ever, careful observations indicate that such postures are adopted
mainly when crayfish face each other (Van der Velden et al.,
2008). Such encounters are likely to trigger descending com-
mands to the thoracic ganglia to activate or modulate postural
circuits. The pair of 5-HT neurons in the first abdominal gan-
glion (A1) are among the potential targets of such descending
responses. The A1 5-HT cells are tonically active, they can be
excited by local mechanosensory stimuli, they project to the tho-
racic ganglia that contain the postural circuits (Beltz and Kravitz,
1983; Beltz and Kravitz, 1987; Beltz, 1999), and they modulate the
reflex responses of the depressor motorneurons (Issa, 2008).
These hypotheses can be applied to other circuits that are in-
volved in other patterns of behavior displayed by dominant and
subordinate animals, including the different responses to an un-
expected touch (Song et al., 2006).
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