705 research outputs found

    The effect of continuum scattering processes on spectral line formation

    Get PDF
    The effect of scattering processes in the continuum on the formation of spectral lines in a static atmosphere with an arbitrary distribution of the internal energy sources is investigated using Ambartsumian's principle of invariance. Spectral line profiles are calculated to illustrate the effect the assumption of the complete redistribution on atoms and coherent scattering in continuum may have on the emergent intensity. The one-dimensional case is considered for simplicity.Comment: 11 pages (including 2 figures). Accepted for publication in Journ. of Quant. Spectr. and Rad. Transfe

    Galactic Evolution of Beryllium and Oxygen

    Full text link
    We discuss the early evolution of beryllium and oxygen in our Galaxy by comparing abundances of these elements for halo and disk metal-poor stars. Both, O and Be rise as we go progressively to more metal-rich stars, showing a slope 0.41 +-0.09 ([Be/O] vs [Fe/H]) for stars with [Fe/H] < -1. This relationship provides an observational constraint to the actually proposed Galactic Cosmic Ray theories.Comment: 8 pages, 2 figures, To appear in The Light Elements and Their Evolution, IAU Symp. 198, L. da Silva, M. Spite and R. de Medeiros, eds., AS

    Abundances in Damped Ly-alpha Galaxies

    Full text link
    Damped Ly_alpha galaxies provide a sample of young galaxies where chemical abundances can be derived throughout the whole universe with an accuracy comparable to that for the local universe. Despite a large spread in redshift, HI column density and metallicity, DLA galaxies show a remarkable uniformity in the elemental ratios rather suggestive of similar chemical evolution if not of an unique population. These galaxies are characterized by a moderate, if any, enhancement of alpha-elements over Fe-peak elemental abundance with [S/Zn] about 0 and [O/Zn] about 0.2, rather similarly to the dwarfs galaxies in the Local Group. Nitrogen shows a peculiar behaviour with a bimodal distribution and possibly two plateaux. In particular, the plateau at low N abundances ([N/H] < -3), is not observed in other atrophysical sites and might be evidence for primary N production by massive stars.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L. Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"

    Searching for the signatures of terrestial planets in solar analogs

    Full text link
    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with opposite sign as that expected from a possible signature of terrestial planets. In particular, two of the planetary systems in this sample, containing each of them a Super-Earth like planet, show slope values very close to these peaks which may suggest that these abundance patterns are not related to the presence of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa

    Higher depletion of lithium in planet host stars: no age and mass effect

    Full text link
    Recent observational work by Israelian et al. has shown that sun-like planet host stars in the temperature range 5700K < Teff < 5850K have lithium abundances that are significantly lower than those observed for "single" field stars. In this letter we use stellar evolutionary models to show that differences in stellar mass and age are not responsible for the observed correlation. This result, along with the finding of Israelian et al., strongly suggest that the observed lithium difference is likely linked to some process related to the formation and evolution of planetary systems.Comment: 4 pages, 4 figures, letter accepted for publication in Astronomy & Astrophysic

    Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?

    Full text link
    We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial'' origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.Comment: 10 pages, 7 figures, accepted for publication in A&A. Figures with higher resolution are available at www.iac.es/proyect/abuntes
    corecore