264 research outputs found

    Impact of prenatal environmental stress on cortical development

    Get PDF
    Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders

    MEASURING OPEN SPACE QUANTITATIVELY IN ONE-UP-ONE-BACK FORMATION DURING SOFT-TENNIS DOUBLES GAME

    Get PDF
    The purpose of this study was to quantitatively define and measure the area of open space in one-up-one-back formation adopted in soft-tennis doubles game. Using the film images of real games, the variables of forehand ground strokes and ball bounces for 153 shots were analyzed with the direct linear transformation procedure. Further taking types of stroke technique and game situations into considerations, horizontal distance between contact point and landing point of shots were predicted by multiple regression analysis. As the result, four scales (two for stroke characteristics, stroke technique, and game situation) were selected as significant predictors. Then on the basis of these data, we predicted the horizontal distance of shots and defined the potential areas on court as "open space" in which shots could be landed, and actually computed the area of open space on one case in the game

    Sea ice changes during the early 20th century Arctic warming in an Earth System Model

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc

    Podoplanin promotes progression of MPM

    Get PDF
    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target

    The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1

    Get PDF
    Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease

    The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-kappa B Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C alpha/beta II Phosphorylation

    Get PDF
    Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKC alpha/beta II, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis

    Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer

    Get PDF
    Histopathological diagnosis is the ultimate method of attaining the final diagnosis; however, the observation range is limited to the two-dimensional plane, and it requires thin slicing of the tissue, which limits diagnostic information. To seek solutions for these problems, we proposed a novel imaging-based histopathological examination. We used the multiphoton excitation microscopy (MPM) technique to establish a method for visualizing unfixed/unstained human breast tissues. Under near-infrared ray excitation, fresh human breast tissues emitted fluorescent signals with three major peaks, which enabled visualizing the breast tissue morphology without any fixation or dye staining. Our study using human breast tissue samples from 32 patients indicated that experienced pathologists can estimate normal or cancerous lesions using only these MPM images with a kappa coefficient of 1.0. Moreover, we developed an image classification algorithm with artificial intelligence that enabled us to automatically define cancer cells in small areas with a high sensitivity of ≥0.942. Taken together, label-free MPM imaging is a promising method for the real-time automatic diagnosis of breast cancer.This is the pre-peer reviewed version of the following article:Matsui T., Iwasa A., Mimura M., et al. Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer. Cancer Science 113, 2916 (2022), which has been published in final form at https://doi.org/10.1111/cas.15428. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma

    Get PDF
    Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.Taniguchi S., Matsui T., Kimura K., et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nature Communications 14, 143 (2023); https://doi.org/10.1038/s41467-022-35701-8
    corecore