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1 Introduction

In this study we consider fuzzy numbers with
bounded supports due to [3] and we treat some
type of fuzzy optimization problems, which
arise from linear optimization problems and
are analyzed under assumptions of the fuzzy
goal and fuzzy constraints of decision mak-
ers. [5] gives an existence criterion for op-
timal solutions of the fuzzy optimization prob-
lems. In Section 2 the existence of optimal
solutions means that there exists at least one
solution for systems of inequalities concerning
concave functions by applying Ky Fan’s the-
orem. In Section 3 we show an extension of
Ky Fan’s theorem, in which functions are not
convex but quasiconvex. In proving the ex-
tension we apply fixed point theorems for set-
valued mappings. In Section 4 we deal with
definitions of convexlike or concavelike func-
tions in the similar way to Chapter 6 in [7] as
well as we get minimax theorems under condi-
tions that functions of two variables are lower
semi-continuous and quasiconvex in one vari-

able and concavelike in the other.

2 Existence Criterion

Let us denote by R the set of real numbers
and I = [0,1}. In [3] the set of fuzzy numbers
is characterized by membership functions as

follows:

Definition 1 Let F(R) be the set of fuzzy
numbers w : R — [ satisfying the following

conditions (i) - (iii) (see [3]):
(i) u(-) is upper semi-continuous on R;

(ii) the a—cut set Lo(u) = {y € R : u(y) >
a} is bounded for a > 0 and
Lo(u) = Upca<iLa(u) is bounded ;

(i) () is fuzzy convexz, i.e.,
w(Ay1 + (1 — A)yz2) > minfu(y1), u(y2)]

foryie Rii = 1,2 and A € R with 0 <
A<

(iv) there exists one and only one m € R such

that u(m) = 1.

The a—cut set L,{u) is compact in R for
each o € I from the above Conditions (i) and
(ii), since (i) means that L,(u) is closed for

acl.
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Remark 1 Under the above Conditions (ii)
and (iv) the following statements (a)-(d) con-
cerning the the function u : R — I are equiva-

lent each other:
(a) u(’) is fuzzy convez;
(b) Lo(u) is convex for any o € I;

(c) u(-) is non-decreasing on (—oo,m] and

that u(-) is non-increasing on [m, 0);
(d) Lg(u) C Lg(u) for a > B.

From (a) it is clear that (b) holds. If we sup-
pose that (a) doesn’t hold but (b) hold, this
leads to a contradiction. It can be seen that
(c) leads to (d) and the converse holds. Sup-
pose that for any m; € R with m; > m there
exist y; < y2 < my such that u(y;) > u(ys)
under Condition (ii) and (a). Then it leads to
a contradiction. From (c), it follows that (a)

holds.

In the following definition we give the qua-

siconvexity of functions.

Definition 2 Let C be a convex set in a linear
space and f a mapping from C to R. It is said
that f is quasiconcave if f(Ay1 + (1 — Ny2) 2
min(f(y1), f(y2)] fory: € C,i = 1,2 and 0 <
A < 1. It is said that f is quasiconver if

Fy1 + (1 = Ay2) < max{f(y1), f(y2)]
fory; €C,i=1,2and0< A< 1.

Remark 2 In the same way as in Remark 2.1
1t 15 easily seen that f : C — R is quasiconvex
if and only if the lower level set L(f;v) = {z €
C: f(z) £ v} is convex for any v € R.

Next we consider the following linear opti-

mization problem (e.g. [4]):
alz < by subject to alz <b;, (2.1)
1=1,2,---,m, x>0, (2.2)

where the symbol “ < ” denotes a relaxed
or fuzzy version of the ordinary inequality “
< ”. The first fuzzy inequality (fuzzy goal)
means that “ the objective function a}  should
be essentially smaller than or equal to an as-
piration level bg € R of the decision maker
(DM)” and the second (fuzzy constraints of
DM) means that “ the constraints a2 should
be essentially smaller than or equal to b; €
R,i =1, ---,m”. Membership functions u; €
F(R),i=0,1,---,m, and it follows that u;(y)
is non-decreasing in y € [C;, b;], non-increasing
in y € [b;, D;i] and u;(y) = O elsewhere. Here
C; < b; < D; are constants. Let u; be concave
on the set [C;,D;]. Put S; = {zx € R* : C; <
alz < D;} and S = N2 ,S;.

Then, in order to solve the above problem,

we have the following optimization problem:
maximize u(z), (2.3)
— mi (aT
where u(z) = Ogt;;_nm[u,(a, z)|. (2.4)
In [5] we showed the existence criterion for op-

timal solutions of fuzzy optimization problems

as follows:
Theorem 1 Let u;(-) € F fori=0,1,---,m.
The following statements (i) and (ii) hold;
(1) Let po = max miin ui(alz). Then we
have
po = max{0<a<1:NZoLa(u;)# 0}

sup{0 < a < 1:NZ,La(u;) # 0}

i
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(ii) We have at least one optimal solution x*
for ((2.3),(2.4)), if and only if there exists
an ag > 0 such that

nifZOLao (ui) # 0.

The above condition (ii) can be reduced to an-
other type of condition by applying Ky Fan’s

theorem in [2] as follows:

Theorem K Let C be a compact and con-
vez set tn a topological linear space. Suppose
that functions f; : C —- R,1 = 1,2,---,n, are
lower semi-continous and convex. Let d € R.
Then the following (i) and (ii) are equivalent
each other:

(i) There exists an zo € C such that

fi(zo) <d

Jori=1,2,.--,n;

(ii) forc=(c1, -+, ¢cn) such that ¢; 2 0,i =
1,2,---,n,andy . ci =1, there exists ay. €
C satisfying

Zcifi(yc) <d.

i=1

From the above theorem, Problem
((2.3),(2.4)) has an optimal solution z* if
and only if there exist 0 < ap <1 and g such

that
ui(a?xo) Z Qp
fori=0,1,~~,m.

Theorem 2 Let S = N ,S; be non-empty

and u;(-) concave on |[Ci,Di| for i =

0,1,---,m. Then Problem ((2.3),(2.4)) has an
optimal solution x*, if and only if for some oy
with 0 < 0p <1 and ¢ = (cg, -+, cm) € R™H!
with ¢; > 0,i = 0,1,---,m, there exists a

Yo € S such that

m
Eciui(a;ryc) = ap.
=0

3 Quasiconvex Functions

In this section we suppose the quasiconvexity
of membership functions and we show an ex-
tension of Ky Fan’s theorem by applying the

following lemma.

Lemma 1 Let C be a compact and convex set
in a topological linear space E. Suppose that a
set A C C'xC satisfies the following conditions
(8 - (©): |

(a) The set {x € C: (z,y) € A} is closed
for any y € C;

(b) theset {y€C:(z,y) ¢ A} is convex
for any z € C;

(¢) forzx € C, the point (z,z) € A.
Then there erists some oy € C such that
{z0} x C C A.

The above Lemma can be proved by apply-
ing the following type of fixed points theorem
for a class of set-valued mappings (e.g., Theo-
rem 10.3.6 in [1]).

Theorem 3 Let E be a topological linear
space and C a non-empty, compact and con-
vex set in E. Let T be a mapping from C
to the set of all subsets of C. Assume that

the image T(zx) is non-empty and convex for
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each © € C. If for each y € C, the inverse
T Yy) = {x € C : T(z) > y} is open, then
T has a fired point in C, i.e, there exists an

xo € C such that zo € T(xzo).

Proof of Lemma 1
Suppose that for any z € C there exists
a y € C such that (z,y) € A. Denote a set-
valued mapping T from C to the set of all sub-
sets of C by T'(z) = {y € C : (z,y) € A}. The
image T'(z) C C is non-empty and convex from
Condition (b) for any z € C. From Condition
(a) the set T~ (y) = {z € C : (z,y) € A} is
open set in E. Then, by applying Theorem 3,
T has a fixed point zg € C, i.e.,, zo € T(2y).
It follows that (xo,z0) € A, which contradicts
Condition (c). Thus the conclusion holds.
Q.E.D.
By utilizing the above lemma we think that
the following results of an extension of Theo-
rem K can ce shown as the below outline of

proof.

Extension of Theorem K(ETK)

e Let fi:C—R fori=1,---,n, be lower
semi-continuous and guasiconver, where
C is a compact and convezx set in a topo-
logical linear space E andletd € R. Then
the following (i) and (ii) are egquivalent
each other:

(i) There exists an zo € C such that
fi(zo) < d

fori=1,2,--- n;
(i) forc= (¢, --,cn) such that ¢; >
0,i =1,2,---,n, and Y i, ci = 1, there

exists a y. € C such that

> afilye) < d.
i=1

In the similar way to the discussion of Chapter
6 in [7], we expect that we can prove the above

extension.

4 Extensions of Minimax
Theorems

[7] gives definitions of convexlike or concave-
like functions, which play an important role

in proving an extension of minimax theorems

under that ETK holds.

Definition 3 Let C,D be two sets and F a
mapping from C x D to R. It is said that F is
concavelike on D for x € C if for each yy,y2 €
D and 0 < A < 1, there exists an yo € D such
that F(z,y0) > AF(z,y1) + (1 — A)F(z,y2). It
is said that F is convezlike on C fory € D if
for each zy, 75 € C and 0 < X < 1, there exists
an xo € C such that F(zo,y) < AF(z1,y) +
(1 = A)F(z2,9).

In what follows we show an extension
of minimax theorems concerning concavelike
functions.

Extension of Minimax Theorems

(EMT)

o Let C be a conver and compact set in a
topological linear space and D an arbitrary
non-empty set. A function F:CxD — R
satisfies the following conditions (i) and

(ii).
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(i) F(-,y) ts lower semi-continuous and
quasiconvez on C fory € D;

(it) F(z,-) is concavelike on D forzx € C.
Then it follows that

sgg grém F(z,y) = mlg slelg F(z,y).
Proof. From (i) and the compactness
of C there exists mingec F(z,y). Let ¢ =
SUpye p Minzec F(z,y) < +oo. For any z € C,
{v1,92,- -, yn} CDand (A 20: 370 A =
1}, Condition (ii) means that there exists a
Yo € D such that 31 MiF(z,4:) < F(z,v0).
From (i) there exists an zo € C such that
F(zo,y0) = min; F(z,y0) < ¢ and also we
have Yo, MiF(z,y:;) < ¢ for any z € C.
By Condition (i) and ETK, there exists an
z; € C such that F(z1,y:) < c¢ for any
i. Then we get N2 {z € C : F(z,y) <
¢} # 0. From the compactness of C, we
have Nyep{z € C : F(z,y) < ¢} # 9,
which means that there exists an zo, € C
and any y € D such that F(z3,y) < ¢, or
min, sup, F(z,y) < sup, min, F(z,y). Since
F(z,y) > min,; F(z,y) for y € D, we have
sup, F(z, v) sup, min, F(z, y) and also
min, sup, F(x,y) > sup, min; F(z,y). There-

fore sup, min, F(z,y) = min, sup, F(z,y).
If sup, ¢ p minzec F(z,y) = oo, it can be seen

that the conclusion holds.

Q.E.D.
The above theorem is an extension of Sion’s
minimax theorem and Tuy’s one. In the fol-

lowing remark an example illustrates EMT.

Remark 3 (a) In [6] Sion assumes that F

18 upper semi-continuous and guasiconcave on

D under the condition that D is compact, in
addition to the conditions of EMT. He gets the

conclusion that

nmax F F
min max F(z,y) = maxmin F(z,y).

Thus EMT is an extension of Sion’s theorem.
(b) Tuy [8] assumes that C and D are con-

vex. He shows that the conclusion
inf sup F(z,y) = sup inf F(x,
inf sup F(z,y) = sup inf Fi(z,y)

under the condition that F is upper semi-

continuous in y in addition to conditions of

EMT.

() Lt  F(z,y)=f(z)ely) for
(z,y) € [-n,n] x (—1,1), where n > 1 is
integer, f denotes the largest integer which is

less than |z|. Here
. w
9v) =" +lysin |,

where y € (—1,1). Then function F' satis-
fies Conditions (i) and (i) of EMT. Since
mmF(a:, y)=0 and supF(:c, y)=2f(x), It
follows that the concluszon of EMT holds.
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