Title	Minimax Theorems of Convexlike Functions（Mathematics and Algorithms of Optimization）
Author（s）	Saito，Seiji；Ishii，Hiroaki
Citation	数理解析研究所講究録（2002），1297：186－191
Issue Date	2002－12
URL	http：／hdl．handle．net／2433／42667
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

Minimax Theorems of Convexlike Functions大阪大学大学院情報科学研究科情報数理学専攻 齍藤誠慈（Seiji SAITO）大阪大学大学院情報科学研究科情報数理学専攻 石井博昭（Hiroaki ISHII）
 Graduate School of Information Science and Technology，Osaka University E－mail：saito＠ist．osaka－u．ac．jp

Keywords ：Fuzzy sets，Set－valued mapping ，Fixed－point theorem，Quasiconvex programming， Fuzzy programming

1 Introduction

In this study we consider fuzzy numbers with bounded supports due to［3］and we treat some type of fuzzy optimization problems，which arise from linear optimization problems and are analyzed under assumptions of the fuzzy goal and fuzzy constraints of decision mak－ ers．［5］gives an existence criterion for op－ timal solutions of the fuzzy optimization prob－ lems．In Section 2 the existence of optimal solutions means that there exists at least one solution for systems of inequalities concerning concave functions by applying Ky Fan＇s the－ orem．In Section 3 we show an extension of Ky Fan＇s theorem，in which functions are not convex but quasiconvex．In proving the ex－ tension we apply fixed point theorems for set－ valued mappings．In Section 4 we deal with definitions of convexlike or concavelike func－ tions in the similar way to Chapter 6 in［7］as well as we get minimax theorems under condi－ tions that functions of two variables are lower semi－continuous and quasiconvex in one vari－ able and concavelike in the other．

2 Existence Criterion

Let us denote by \mathbf{R} the set of real numbers and $I=[0,1]$ ．In $[3]$ the set of fuzzy numbers is characterized by membership functions as follows：

Definition 1 Let $\mathcal{F}(\mathbf{R})$ be the set of fuzzy numbers $u: \mathbf{R} \rightarrow I$ satisfying the following conditions（i）－（iii）（see［3］）：
（i）$u(\cdot)$ is upper semi－continuous on \mathbf{R} ；
（ii）the α－cut set $L_{\alpha}(u)=\{y \in \mathbf{R}: u(y) \geq$ $\alpha\}$ is bounded for $\alpha>0$ and $L_{0}(u)=\overline{U_{0<\alpha \leq 1} L_{\alpha}(u)}$ is bounded ；
（iii）$u(\cdot)$ is fuzzy convex，i．e．，
$u\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \geq \min \left[u\left(y_{1}\right), u\left(y_{2}\right)\right]$
for $y_{i} \in \mathbf{R}, i=1,2$ and $\lambda \in \mathbf{R}$ with $0 \leq$ $\lambda \leq 1 ;$
（iv）there exists one and only one $m \in \mathbf{R}$ such that $u(m)=1$ ．

The α－cut set $L_{\alpha}(u)$ is compact in \mathbf{R} for each $\alpha \in I$ from the above Conditions（i）and （ii），since（i）means that $L_{\alpha}(u)$ is closed for $\alpha \in I$ ．

Remark 1 Under the above Conditions (ii) and (iv) the following statements (a)-(d) concerning the the function $u: \mathbf{R} \rightarrow I$ are equivalent each other:
(a) $u(\cdot)$ is fuzzy convex;
(b) $L_{\alpha}(u)$ is convex for any $\alpha \in I$;
(c) $u(\cdot)$ is non-decreasing on $(-\infty, m]$ and that $u(\cdot)$ is non-increasing on $[m, \infty)$;
(d) $L_{\alpha}(u) \subset L_{\beta}(u)$ for $\alpha>\beta$.

From (a) it is clear that (b) holds. If we suppose that (a) doesn't hold but (b) hold, this leads to a contradiction. It can be seen that (c) leads to (d) and the converse holds. Suppose that for any $m_{1} \in \mathbf{R}$ with $m_{1}>m$ there exist $y_{1}<y_{2} \leq m_{1}$ such that $u\left(y_{1}\right)>u\left(y_{2}\right)$ under Condition (ii) and (a). Then it leads to a contradiction. From (c), it follows that (a) holds.

In the following definition we give the quasiconvexity of functions.

Definition 2 Let C be a convex set in a linear space and f a mapping from C to \mathbf{R}. It is said that f is quasiconcave if $f\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \geq$ $\min \left[f\left(y_{1}\right), f\left(y_{2}\right)\right]$ for $y_{i} \in C, i=1,2$ and $0 \leq$ $\lambda \leq 1$. It is said that f is quasiconvex if

$$
f\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \leq \max \left[f\left(y_{1}\right), f\left(y_{2}\right)\right]
$$

for $y_{i} \in C, i=1,2$ and $0 \leq \lambda \leq 1$.
Remark 2 In the same way as in Remark 2.1 it is easily seen that $f: C \rightarrow \mathbf{R}$ is quasiconvex if and only if the lower level set $L(f ; \gamma)=\{x \in$ $C: f(x) \leq \gamma\}$ is convex for any $\gamma \in \mathbf{R}$.

Next we consider the following linear optimization problem (e.g. [4]):

$$
\begin{array}{r}
a_{0}^{T} x \preceq b_{0} \quad \text { subject to } \quad a_{i}^{T} x \preceq b_{i}, \\
 \tag{2.2}\\
i=1,2, \cdots, m, \quad x \geq 0,
\end{array}
$$

where the symbol " \preceq " denotes a relaxed or fuzzy version of the ordinary inequality " $\leq "$. The first fuzzy inequality (fuzzy goal) means that " the objective function $a_{0}^{T} x$ should be essentially smaller than or equal to an aspiration level $b_{0} \in \mathbf{R}$ of the decision maker (DM)" and the second (fuzzy constraints of DM) means that " the constraints $a_{i}^{T} x$ should be essentially smaller than or equal to $b_{i} \in$ $\mathrm{R}, i=1, \cdots, m$. Membership functions $u_{i} \in$ $\mathcal{F}(\mathbf{R}), i=0,1, \cdots, m$, and it follows that $u_{i}(y)$ is non-decreasing in $y \in\left[C_{i}, b_{i}\right]$, non-increasing in $y \in\left[b_{i}, D_{i}\right]$ and $u_{i}(y) \equiv 0$ elsewhere. Here $C_{i} \leq b_{i} \leq D_{i}$ are constants. Let u_{i} be concave on the set $\left[C_{i}, D_{i}\right]$. Put $S_{i}=\left\{x \in \mathbf{R}^{n}: C_{i} \leq\right.$ $\left.a_{i}^{T} x \leq D_{i}\right\}$ and $S=\cap_{i=0}^{n} S_{i}$.

Then, in order to solve the above problem, we have the following optimization problem:

$$
\begin{gather*}
\text { maximize } u(x), \tag{2.3}\\
\text { where } \quad u(x)=\min _{0 \leq i \leq m}\left[u_{i}\left(a_{i}^{T} x\right)\right] . \tag{2.4}
\end{gather*}
$$

In [5] we showed the existence criterion for optimal solutions of fuzzy optimization problems as follows:

Theorem 1 Let $u_{i}(\cdot) \in \mathcal{F}$ for $i=0,1, \cdots, m$. The following statements (i) and (ii) hold;
(i) Let $\mu_{0}=\max _{x} \min _{i} u_{i}\left(a_{i}^{T} x\right)$. Then we have

$$
\begin{aligned}
\mu_{0} & =\max \left\{0<\alpha \leq 1: \cap_{i=0}^{m} L_{\alpha}\left(u_{i}\right) \neq \emptyset\right\} \\
& =\sup \left\{0<\alpha \leq 1: \cap_{i=0}^{m} L_{\alpha}\left(u_{i}\right) \neq \emptyset\right\}
\end{aligned}
$$

(ii) We have at least one optimal solution x^{*} for $((2.3),(2.4))$, if and only if there exists an $\alpha_{0}>0$ such that

$$
\cap_{i=0}^{m} L_{\alpha_{0}}\left(u_{i}\right) \neq \emptyset .
$$

The above condition (ii) can be reduced to another type of condition by applying Ky Fan's theorem in [2] as follows:

Theorem K Let C be a compact and convex set in a topological linear space. Suppose that functions $f_{i}: C \rightarrow \mathbf{R}, i=1,2, \cdots, n$, are lower semi-continous and convex. Let $d \in \mathbf{R}$. Then the following (i) and (ii) are equivalent each other:
(i) There exists an $x_{0} \in C$ such that

$$
f_{i}\left(x_{0}\right) \leq d
$$

for $i=1,2, \cdots, n$;
(ii) for $c=\left(c_{1}, \cdots, c_{n}\right)$ such that $c_{i} \geq 0, i=$ $1,2, \cdots, n$, and $\sum_{i=1}^{n} c_{i}=1$, there exists a $y_{c} \in$ C satisfying

$$
\sum_{i=1}^{n} c_{i} f_{i}\left(y_{c}\right) \leq d
$$

From the above theorem, Problem ((2.3),(2.4)) has an optimal solution x^{*} if and only if there exist $0<\alpha_{0} \leq 1$ and x_{0} such that

$$
u_{i}\left(a_{i}^{T} x_{0}\right) \geq \alpha_{0}
$$

for $i=0,1, \cdots, m$.

Theorem 2 Let $S=\cap_{i=0}^{n} S_{i}$ be non-empty and $u_{i}(\cdot)$ concave on $\left[C_{i}, D_{i}\right]$ for $i=$
$0,1, \cdots, m$. Then Problem ((2.3),(2.4)) has an optimal solution x^{*}, if and only if for some α_{0} with $0<\alpha_{0} \leq 1$ and $c=\left(c_{0}, \cdots, c_{m}\right) \in \mathbf{R}^{m+1}$ with $c_{i} \geq 0, i=0,1, \cdots, m$, there exists a $y_{c} \in S$ such that

$$
\sum_{i=0}^{m} c_{i} u_{i}\left(a_{i}^{T} y_{c}\right) \geq \alpha_{0}
$$

3 Quasiconvex Functions

In this section we suppose the quasiconvexity of membership functions and we show an extension of Ky Fan's theorem by applying the following lemma.

Lemma 1 Let C be a compact and convex set in a topological linear space E. Suppose that a set $A \subset C \times C$ satisfies the following conditions (a) - (c):
(a) The set $\{x \in C:(x, y) \in A\}$ is closed for any $y \in C$;
(b) the set $\{y \in C:(x, y) \notin A\}$ is convex for any $x \in C$;
(c) for $x \in C$, the point $(x, x) \in A$.

Then there exists some $x_{0} \in C$ such that $\left\{x_{0}\right\} \times C \subset A$.

The above Lemma can be proved by applying the following type of fixed points theorem for a class of set-valued mappings (e.g., Theorem 10.3.6 in [1]).

Theorem 3 Let E be a topological linear space and C a non-empty, compact and convex set in E. Let T be a mapping from C to the set of all subsets of C. Assume that the image $T(x)$ is non-empty and convex for
each $x \in C$. If for each $y \in C$, the inverse $T^{-1}(y)=\{x \in C: T(x) \ni y\}$ is open, then T has a fixed point in C, i.e, there exists an $x_{0} \in C$ such that $x_{0} \in T\left(x_{0}\right)$.

Proof of Lemma 1

Suppose that for any $x \in C$ there exists a $y \in C$ such that $(x, y) \notin A$. Denote a setvalued mapping T from C to the set of all subsets of C by $T(x)=\{y \in C:(x, y) \notin A\}$. The image $T(x) \subset C$ is non-empty and convex from Condition (b) for any $x \in C$. From Condition (a) the set $T^{-1}(y)=\{x \in C:(x, y) \notin A\}$ is open set in E. Then, by applying Theorem 3, T has a fixed point $x_{0} \in C$, i.e., $x_{0} \in T\left(x_{0}\right)$. It follows that $\left(x_{0}, x_{0}\right) \notin A$, which contradicts Condition (c). Thus the conclusion holds.
Q.E.D.

By utilizing the above lemma we think that the following results of an extension of Theorem K can ce shown as the below outline of proof.

Extension of Theorem K(ETK)

- Let $f_{i}: C \rightarrow \mathbf{R}$ for $i=1, \cdots, n$, be lower semi-continuous and quasiconvex, where C is a compact and convex set in a topological linear space E and let $d \in \mathbf{R}$. Then the following (i) and (ii) are equivalent each other:
(i) There exists an $x_{0} \in C$ such that

$$
f_{i}\left(x_{0}\right) \leq d
$$

for $i=1,2, \cdots, n$;
(ii) for $c=\left(c_{1}, \cdots, c_{n}\right)$ such that $c_{i} \geq$ $0, i=1,2, \cdots, n$, and $\sum_{i=1}^{n} c_{i}=1$, there
exists a $y_{c} \in C$ such that

$$
\sum_{i=1}^{n} c_{i} f_{i}\left(y_{c}\right) \leq d
$$

In the similar way to the discussion of Chapter 6 in [7], we expect that we can prove the above extension.

4 Extensions of Minimax Theorems

[7] gives definitions of convexlike or concavelike functions, which play an important role in proving an extension of minimax theorems under that ETK holds.

Definition 3 Let C, D be two sets and $F a$ mapping from $C \times D$ to \mathbf{R}. It is said that F is concavelike on D for $x \in C$ if for each $y_{1}, y_{2} \in$ D and $0<\lambda<1$, there exists an $y_{0} \in D$ such that $F\left(x, y_{0}\right) \geq \lambda F\left(x, y_{1}\right)+(1-\lambda) F\left(x, y_{2}\right)$. It is said that F is convexlike on C for $y \in D$ if for each $x_{1}, x_{2} \in C$ and $0<\lambda<1$, there exists an $x_{0} \in C$ such that $F\left(x_{0}, y\right) \leq \lambda F\left(x_{1}, y\right)+$ $(1-\lambda) F\left(x_{2}, y\right)$.

In what follows we show an extension of minimax theorems concerning concavelike functions.

Extension of Minimax Theorems (EMT)

- Let C be a convex and compact set in a topological linear space and D an arbitrary non-empty set. A function $F: C \times D \rightarrow \mathbf{R}$ satisfies the following conditions (i) and (ii).
(i) $F(\cdot, y)$ is lower semi-continuous and quasiconvex on C for $y \in D$;
(ii) $F(x, \cdot)$ is concavelike on D for $x \in C$.

Then it follows that

$$
\sup _{y \in D} \min _{x \in C} F(x, y)=\min _{x \in C} \sup _{y \in D} F(x, y)
$$

Proof. From (i) and the compactness of C there exists $\min _{x \in C} F(x, y)$. Let $c=$ $\sup _{y \in D} \min _{x \in C} F(x, y)<+\infty$. For any $x \in C$, $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset D$ and $\left\{\lambda_{i} \geq 0: \sum_{i=1}^{n} \lambda_{i}=\right.$ $1\}$, Condition (ii) means that there exists a $y_{0} \in D$ such that $\sum_{i=1}^{n} \lambda_{i} F\left(x, y_{i}\right) \leq F\left(x, y_{0}\right)$. From (i) there exists an $x_{0} \in C$ such that $F\left(x_{0}, y_{0}\right)=\min _{x} F\left(x, y_{0}\right) \leq c$ and also we have $\sum_{i=1}^{n} \lambda_{i} F\left(x, y_{i}\right) \leq c$ for any $x \in C$. By Condition (i) and ETK, there exists an $x_{1} \in C$ such that $F\left(x_{1}, y_{i}\right) \leq c$ for any i. Then we get $\cap_{i=1}^{n}\left\{x \in C: F\left(x, y_{i}\right) \leq\right.$ c\} $\neq \emptyset$. From the compactness of C, we have $\cap_{y \in D}\{x \in C: F(x, y) \leq c\} \neq \emptyset$, which means that there exists an $x_{2} \in C$ and any $y \in D$ such that $F\left(x_{2}, y\right) \leq c$, or $\min _{x} \sup _{y} F(x, y) \leq \sup _{y} \min _{x} F(x, y)$. Since $F(x, y) \geq \min _{x} F(x, y)$ for $y \in D$, we have $\sup _{y} F(x, y) \geq \sup _{y} \min _{x} F(x, y)$ and also $\min _{x} \sup _{y} F(x, y) \geq \sup _{y} \min _{x} F(x, y)$. Therefore $\sup _{y} \min _{x} F(x, y)=\min _{x} \sup _{y} F(x, y)$. If $\sup _{y \in D} \min _{x \in C} F(x, y)=\infty$, it can be seen that the conclusion holds.
Q.E.D.

The above theorem is an extension of Sion's minimax theorem and Tuy's one. In the following remark an example illustrates EMT.

Remark 3 (a) In [6] Sion assumes that F is upper semi-continuous and quasiconcave on
D under the condition that D is compact, in addition to the conditions of EMT. He gets the conclusion that

$$
\min _{x \in C} \max _{y \in D} F(x, y)=\max _{y \in D} \min _{x \in C} F(x, y) .
$$

Thus EMT is an extension of Sion's theorem.
(b) Tuy [8] assumes that C and D are convex. He shows that the conclusion

$$
\inf _{x \in C} \sup _{y \in D} F(x, y)=\sup _{y \in D} \inf _{x \in C} F(x, y)
$$

under the condition that F is upper semicontinuous in y in addition to conditions of EMT.
(c) Let $F(x, y)=f(x) g(y) \quad$ for $(x, y) \in[-n, n] \times(-1,1)$, where $n \geq 1$ is integer, f denotes the largest integer which is less than $|x|$. Here

$$
g(y)=y^{2}+\left|y \sin \frac{\pi}{2 y}\right|
$$

where $y \in(-1,1)$. Then function F satisfies Conditions (i) and (ii) of EMT. Since $\min _{x} F(x, y)=0$ and $\sup _{y} F(x, y)=2 f(x)$, It follows that the conclusion of EMT holds.

References

[1] V.I. Istrătescu: Fixed Points Theory, Reidel Pub.,1981.
[2] K.Fan: Existence Theorems and Extreme Solutions for Inequalities Concerning Convex Functions or Linear Transformations, Math. Z., 68, 205-217 (1957).
[3] M.L.Puri and D.A.Ralescu: Differential of Fuzzy Functions, J. Math. Anal. Appl., 91, 552-558 (1983).
[4] M. Sakawa: Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, 1993.
[5] S.Saito and H.Ishii: Existence Criteria for Fuzzy Optimization Problems, Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka ed.), World Scientific, 321-325 (1998).
[6] M.Sion : On General Minimax Theorems, Pacific J. Math., 8, 171-176 (1958).
[7] W.Takahashi: Nonlinear Functional Analysis -Fixed Point Theory and Its Applications -, Yokohama Publ., 2000.
[8] H.Tuy: Convex Analysis and Global Optimization, Kluwer Academic Publ., 1998.

