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Summary  

Prenatal exposure of the developing brain to various types of environmental stress increases 

susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity 

disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental 

stress in the cerebral cortex impair the cognitive and memory functions, this review focuses 

on underlying molecular mechanisms of pathological cortical development. We especially 

highlight recent works that utilized animal exposure models, human specimens or/and 

induced Pluripotent Stem (iPS) cells to demonstrate: 1. molecular mechanisms shared by 

various types of environmental stressors, 2. the mechanisms by which the affected 

extracortical tissues indirectly impact the cortical development and function, and 3. 

interaction between prenatal environmental stress and the genetic predisposition of 

neuropsychiatric disorders. Finally, we discuss current challenges for achieving a 

comprehensive understanding of the role of environmentally disturbed molecular 

expressions in cortical maldevelopment, knowledge of which may eventually facilitate 

discovery of interventions for prenatal environment-linked neuropsychiatric disorders. 
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Introduction 

The development of the cerebral cortex consists of very intricate multifaceted steps 

including proliferation/differentiation of neural progenitor cells, neuronal migration and 

maturation [1] [2] [3] [4] [5] [6] [7] [8] [9], and it can be impaired by exposure to 

environmental stress [10] [11] [12]. Even subtle disturbances in the development of the 

cerebral cortex impair cognitive and memory functions [13] [14]. Accordingly, ever 

increasing attention is being paid to understanding the underlying non-genomic alterations 

thought to govern impairment. 

 Alcohol is known as one of the most prevalent prenatal environmental stress, and 

prenatal alcohol exposure-linked impairments are categorized under the term “Fetal 

Alcohol Spectrum Disorder (FASD)”. FASD patients show higher rates of co-morbidity 

with various types of neuropsychiatric problems, such as attention deficit hyperactivity 

disorder (ADHD) and epilepsy [15]. Histological analysis using postmortem tissues from 

FASD patients documented various anomalies in the brain, including heterotopias, 

microcephaly, hydrocephaly and agenesis of the corpus callosum [16] [17] [18]. Many of 



these morphological phenotypes, as well as behavioral phenotypes of human patients, have 

been reproduced by non-human primate, rodent and other vertebrate models of fetal alcohol 

exposure, and therefore, these animal models have been used for understanding etiology of 

FASD and other health problems linked to prenatal alcohol exposure [19] [20] [21] [22]. 

Furthermore, these animal studies found that fetal alcohol exposure particularly affects the 

development of the cerebral cortex, in multiple cellular events including proliferation, 

differentiation, apoptosis, migration, synaptogenesis and dendritogenesis, depending on the 

regimens and timing of exposure [11] [23] [24]. 

 Similarly, clinical and epidemiological studies identified a variety of environmental 

stressors, exposure to which increases the risk of neuropsychiatric diseases [25].  

Importantly, rodent and non-human primate models of prenatal exposure to those 

environmental factors, including hypoxia [26] [27], drugs such as cocaine [11] [28] [29] 

[30] [31] [32] [33], and heavy metals such as methylmercury [34] [35], have shown that 

these factors cause similar structural anomalies in the cortex as well as similar abnormal 

behaviors [11]. These findings imply that different environmental challenges provide 



common impacts on cortical development, thereby resulting in similar endophenotypes. 

Here, we review recent publications that found molecular mechanisms underlying 

pathological cortical development elicited by exposure to prenatal environmental stress and 

discuss how various types of prenatal environmental stress similarly affect cortical 

development and increase the risk of neuropsychiatric disorders. 

 

Early response genes that protect or disturb cortical development under the 

conditions of exposure to environmental stress 

Based on recent findings using prokaryotes, genes that respond (either by increase or 

decrease of expression) to environmental stress can be classified mainly into 2 groups [36] 

[37] [38]. The first group consists of genes that exhibit altered expression immediately 

upon exposure to multiple types of environmental insult. The second group consists of 

genes that exhibit altered expression profiles only upon exposure to specific types of 

environmental stress and are generally altered gradually post exposure. Thus, orchestrated 

changes in the activities of these two types of genes are likely to occur in developing 



cortices. The following section focuses on the first group of genes that immediately respond 

to environmental stress and may lead to common endophenotypes [39], discussing how 

these genes change the molecular landscape of cortical development and contribute to the 

pathogenesis elicited by prenatal environmental stress.  

 

1. Stress responsive signaling 

The cellular stress activates multiple signaling pathways that are well positioned to help 

restore homeostasis upon sudden environmental changes, or, in the long run, enforce a new 

gene expression program so cells can tolerate the new environment. These signaling 

pathways and genes include molecular chaperone encoding genes, genes involved in the 

unfolded protein response, Mitogen-Activated Protein Kinase (MAPK) and Growth Arrest 

and DNA Damage 45 (GADD45) signaling pathways [40]. The Heat Shock Protein (HSP) 

pathway is a major molecular chaperone signaling pathway, the activation of which has 

been identified as one of immediate molecular responses to various types of environmental 

stress, including alcohol, heat, heavy metals and viral infection [35] [41] [42].  



 Our recent study using knockout mice of Heat shock factor 1 (Hsf1), a canonical 

transcription factor that controls transcription of Hsp genes revealed that activation of this 

signaling is required to reduce the risk of cortical malformation, such as heterotopias and 

small size of the cortex, upon prenatal exposure to various types of environmental stress, 

thereby reducing susceptibility to epilepsy [35]. Histological analysis immediately after 

prenatal stress exposure revealed that the increase of these cortical malformations in Hsf1 

knockout mice is due to the increase of cell death and suspension of cell cycling, suggesting 

Hsf1’s roles in cellular protection against environmental stress. Interestingly, the canonical 

downstream targets of Hsf1, Hsps mediate proapoptotic effects of Hsf1 but not the effects 

on cell cycling (Fig.1). El Fatimy et al., (2014) showed that, many cortical genes that are 

critically involved in the control of cell cycling/proliferation and the neuronal migration are 

under the control of Hsf1 and the family gene Hsf2 [43]. Thus the activation of HSF1 

immediately alters expressions of various types of genes to protect the embryonic cortex 

from environmental stress.  

Another example of a stress responsive transcriptional factor that protects the fetal 



brain from prenatal environmental stress is Nuclear Factor Erythroid 2-Related Factor 2 

(Nfe2l2/Nrf2). The transcriptional activity is increased in response to such as alcohol [44], 

kainate induced excitotoxic damage [45] and hydrogen peroxide induced oxidative stress 

[46]. The target genes include multiple genes that encode antioxidant proteins [47] [48].  

Prenatal exposure to methamphetamine (speed) plus Nrf2 loss of function lead to reduced 

motor activity, smaller body weight etc. in the offspring [49]. Interestingly, the gender 

dependent differences were observed in the severity of the phenotypes. 

These lines of evidence suggest that multiple cellular mechanisms provoked by the 

stress response genes act to ensure fetal cortical tolerance to environmental stress, and thus 

decrease the prevalence and severity of ensuing neuropsychiatric diseases [35]. 

 

2. MicroRNAs 

Post-transcriptional controls have been demonstrated to be critically involved in the control 

of normal cortical development [50] [51] [52]. MicroRNAs (miRNAs) are non-coding 

RNAs that are involved in post-transcriptional regulation of the expression of a wide 



variety of genes [53]. Because of their nature as short RNAs for post-transcriptional 

regulation of genes, they are likely to change the molecular landscape of the cell 

immediately and temporally in response to environmental challenges [54]. 

In a comprehensive miRNA profiling study using a neurosphere model of alcohol 

exposure, Miranda and his colleagues found a reduction in expressions of miR-21, miR-335, 

miR-9, and miR-153 24 hours after exposure [55]. 

MiR-9 knockout mouse displays smaller brain size [56]. The analysis of those 

embryonic brains suggested that impaired proliferation and differentiation of neural 

progenitor cells in stage dependent manner may lead to the smaller brain. Consistent with 

this in vivo observation, miR-9 knockdown inhibited the proliferation and promoted the 

migration of the neural progenitor cells in vitro [57]. The control of these biological events 

by miR-9 may be mediated by controlling expression levels of the downstream targets such 

as Forkhead box G1 (Foxg1/Bf1) [56] [58], embryonic lethal, abnormal vision, Drosophila 

like 2 (Elavl2/HuB) [55], Fibroblast growth factor receptor 1 (Fgfr1) [59], Forkhead box 

P2 (Foxp2) [59],  Stathmin 1 (Stmn1) [57], Nuclear receptor subfamily 2, group E, member 



1 (Nr2e1/Tlx) [56] [60], Inhibitor of DNA binding 4 (Id4) [58], Paired box 6 (Pax6) [56], 

Meis homeobox 2 (Meis2) [56], GS homeobox 2 (Gsh2) [56], Islet1 (Isl1) [56], RE1-

silencing transcription factor (Rest) [61], and Actin-like 6A (Actl6a/BAF53a) [62]. Thus 

reduced expression of miR-9 by alcohol exposure is also likely to inhibit those events by 

the similar mechanism. The miR-153 and miR-21 also similarly control the cellular 

proliferation [63] [64]. 

  Reduction of miR-9 expression and the target gene expressions in the zebrafish 

whole-embryo [65] and the embryonic forebrain [59] exposed to alcohol also supports this 

hypothesis. However, in the conditions of exposure to different contexts of maternal stress 

induced by such as restraint of the body and forced swimming, expression of miR-9 was 

increased in the brain of offspring [66]. Similarly, the expression of miR-21 has also been 

reported to be increased in the different ambience, such as in the mouse brain exposed to 

ionizing radiation [67], in the endothelial cells under the exposure to shear stress [68], and 

in the embryonic fibroblasts exposed to arsenite [69]. The expression of miR-153 is also 

upregulated by hydrogen peroxidase induced oxidative stress [70] and nicotine exposure 



[71]. These lines of evidence indicate that the microRNAs are susceptible to the 

environmental changes and that the overall changes of various types of microRNAs may 

determine the phenotypes specific to types/regimens of the environmental stress exposure. 

The fact that miR-335 knockdown reverses the effects of miR-21 knockdown in the cell 

proliferation and death also supports this possibility [55].  

 

Maternal, placental and extracortical tissues exhibit indirect effects as a result of 

environmental stress.  

Beside direct molecular changes within embryonic cortical cells, evidences exist that 

indirect impacts of environmental stress from maternal, placental and other extracortical 

tissues exert a critical influence on cortical development [72]. 

Maternal infection is well defined by epidemiological studies as a risk factor for 

neurodevelopmental disorders such as autism and schizophrenia [73] [74] [75]. Mouse 

offspring that have been exposed to maternal infection display abnormalities reminiscent of 

the behavioral, histological and molecular characteristics of autism [76], while fetal brain 



infection does not cause these abnormalities [74]. Mouse offspring exposed to maternal 

immune activation (MIA), which is elicited by poly-riboinosinic-polyribocytidylic acid or 

lipopolysaccharide, also reproduce the behavioral and histological abnormalities of autism 

[77] [78] [79] [80], suggesting that activation of maternal immune system triggered by 

infection is critical for manifestation of deficits. These early findings have proven MIA 

model useful in the investigation of the molecular mechanisms at play in unraveling 

maternal effects on the pathophysiology of autism. 

Smith and colleagues demonstrated that a proinflammatory cytokine interleukin-6 (IL-

6) supplied from the maternal tissues might mediate the MIA effects on the fetal cortex 

[78]. A single maternal injection of IL-6 in the middle of corticogenesis causes deficits in 

prepulse inhibition and lateral inhibition in the offspring [78], both of which are linked to 

autism and schizophrenia [81] [82] [83] [84]. They also demonstrated that inhibition of IL-

6 by application of the antibody or using the knockout dam, significantly ameliorated such 

as cognitive and exploratory deficits in mouse offspring exposed to MIA [78]. The gene 

expression profiles were also reversed by inhibition of IL-6 in the cortices of the MIA 



offspring. These results provided evidence that IL-6 may owe the indirect effects of MIA on 

fetal cortical development. 

Indirect effects of MIA on cortical development may also involve the effects from 

gastrointestinal tissues of offspring. Autism is often associated with gastrointestinal barrier 

defects [85] [86], and rodent MIA models reproduce these defects [87]. Hsiao E. and 

colleagues made an interesting observation that probiotic treatment of gastrointestinal 

barrier defects improved behavioral abnormalities such as anxiety-like behavior, decreased 

prepulse inhibition, and deficits in ultrasonic vocal communication in the MIA offspring. 

Their study also suggested the possibility that gastrointestinal barrier deficit-induced 

increase of serum metabolites such as 4-ethylphenylsulfate, indolepyruvate, glycolate, 

imidazole propionate, and N-acetylserine, may contribute to behavior abnormality in the 

MIA offspring [87]. Of these, the most dramatically affected metabolite, 4-

ethylphenylsulfate, has been known as a uremic toxin, and the administration of this 

metabolite induces anxiety-like behavior in the mouse [87]. As a recent study suggested the 

link between the uremic toxin and the depression in the chronic kidney disease [88], the 4-



ethylphenylsulfate in serum may be the common factor that affects the brain function in 

various pathophysiological conditions. 

Serotonin derived from placenta may also indirectly affect embryonic brain 

development. Recent studies demonstrated that the placenta is the major source of serotonin 

at early embryonic stage, while the dorsal raphe nuclei in the hindbrain take over from late 

embryonic stage to adulthood [89]. Abnormal serotonin levels in the brain have been linked 

to autism [90] [91] [92], and the role of serotonin in the normal development of 

thalamocortical projections also has been reported [93]. In addition, it has been 

demonstrated that prenatal intake of selective serotonin reuptake inhibitors increases the 

risk of cognitive impairment in mouse progeny [94] [95]. Importantly, serotonin level is 

lower in the cortices of the offspring exposed to environmental stress such as maternal 

infection [96] [97] and cocaine [29]. Therefore environmental stressors may indirectly 

affect the cortical development as a result of disruption in the synthesis/release of serotonin 

in/from the placenta [72]. 

Interaction between a susceptible genotype and environmental risk factors 



Genome wide association studies have shown a polygenic component contributes to the 

risk of schizophrenia and autism [98]. Similarly, many epidemiological studies as well as 

the aforementioned results from studies of animal exposure models have shown these 

disorders also include a “polyepigenetic” component that is influenced by various types of 

environmental stress [10] [99] [100] [101] [102]. However, just how the polyepigenetic 

component increases the risk of disease manifestation by interacting with polygenic 

component is largely unknown.   

 One relatively new approach to help answering this question is the use of induced 

Pluripotent Stem (iPS) cells taken from subjects diagnosed with polygenic diseases such as 

schizophrenia or autism. iPS cells are not only becoming useful tools to obtain functional 

human cortical neurons [103] [104] [105] [106] for understanding the pathogenesis of 

disease, but are also being utilized for drug screening [107]. To examine potential 

interactions between genetic predisposition and the environmental risk factors, we recently 

used iPS cells derived from schizophrenia patients, and exposed the differentiated neural 

progenitor cells to environmental stress including alcohol, methylmercury and hydrogen 



peroxide. Single cell RNA detection revealed augmented cell-to-cell variable activation of 

HSF1-HSP signaling in the schizophrenia patients’ neural progenitor cells, individual cell 

lines of which carry different genetic risks for schizophrenia (Fig.2). This finding suggests 

that variable responses of HSF1-HSP signaling among a population of neural progenitor 

cells exposed to environmental stress is predetermined by genetic predisposition and may 

increase the risk of the onset of schizophrenia as well as other neuropsychiatric diseases 

[35] [108]. 

Using Disrupted-in-schizophrenia-1 gene (Disc1) mutant mice combined with MIA, in 

vivo evidence for the interaction of gene and prenatal environment in the pathogenesis of 

schizophrenia and depression was also provided. The Disc1 is one of the risk genes for 

psychiatric disorders such as schizophrenia and mood disorders [109] [110]. The transgenic 

mice expressing the dominant negative form of Disc1 that was found in the patient [110], 

displayed hyperactivity and impaired social interaction [111]. When this transgenic mouse 

was subjected to MIA, neurobehavioral phenotypes such as anxiety, depression-like 

behavior, and a decrease in social interaction and an increase in aggressiveness were 



unraveled [112]. Two other Disc1 mutant mouse lines with point mutations at Q31L and 

L100P, which show schizophrenia and depression related phenotypes, respectively [113], 

were also subjected to MIA. MIA exposure augmented the impairment in prepulse 

inhibition, lateral inhibition, spatial object recognition, and social motivation of those Disc1 

mutant mice [114]. Importantly, the production of IL-6 was concomitantly increased by the 

combination of Disc1 mutations and the MIA in the fetal mouse brains [114]. Thus these 

mouse models that combine Disc1 mutation and MIA will become powerful models for 

understanding the molecular mechanisms underlying interactions between the gene and 

prenatal environmental factors that increase the risk of the psychiatric diseases. 

 

Outlook 

As outlined in this review, research on polyepigenetic mechanisms associated with many 

types of environmental stress that disturb cortical development and on potential 

prophylactic or preventative interventions of these disturbances are just beginning to 

emerge. To further facilitate this type of research, patient-derived iPS cells will become one 



of several powerful tools. Although there are a number of limitations in their use, easy 

application of environmental stress and the potential for high throughput analysis 

substantiate their usefulness. Challenges include: 1. limited availability of iPS cell lines that 

are fully characterized; 2. lack of validated differentiation protocols for specific types of 

neurons; and 3. lack of validated in vivo approaches (e.g., efficient transplantation methods 

to animal models, etc.) that allow observation of the iPS cells during cortical development. 

A type of the environmental stress can lead to various phenotypes in the cerebral 

cortex, however this variability cannot be explained exclusively by different regimens of 

exposure. Recent studies have revealed potential factors that may affect the resultant 

phenotypes, including gender [49] [115] and probabilistic molecular responses of individual 

cells to the environmental stress [35] (Fig.2) etc. Thus the next important questions will be: 

1. if such molecular differences of individual cells elicited by environmental stress are 

sustained for long periods of time and ultimately result in altered cortical function, and 2. 

which molecules mediate the gender specific effects of prenatal environmental stress. 

 Another recent interesting observation that needs to be addressed at the molecular 



level is the transgenerational effects of prenatal exposure to environmental stress, as 

reported in the cases of alcohol [116]. This observation opens up a whole new field of 

research that might eventually lead to an understanding of why FASD and other 

environment-linked disorders show familial and geographical linkages.     
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Legends 

Figure 1   

HSF1-mediated protection of neural progenitor cells from various types of 

environmental stress 

Upon exposure to environmental stress, HSF1 is activated and HSPs transcribed by HSF1 

inhibit cell death. HSF1 also keeps cell cycling/proliferation under stress exposure. The 

downstream player X is still unknown. 

Figure 2   

Cell-to-cell variability of HSF1 activation in response to environmental challenges is 

increased in schizophrenia neural progenitor cells.  

The number of cells that are in the levels of excess or very little activation of HSF1 was 

increased in the schizophrenia cells [35]. These outlier cells may be at the risk of 

manifesting pathophysiological features (indicated by the cells surrounded by broken lines). 

 

 



Figure 1.TIF



Figure 2.TIF
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