37 research outputs found

    Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information

    Get PDF
    Vibrational spectroscopy has emerged as a promising tool for non-invasive, multiplexed measurement of blood constituents - an outstanding problem in biophotonics. Here, we propose a novel analytical framework that enables spectroscopy-based longitudinal tracking of chemical concentration without necessitating extensive a priori concentration information. The principal idea is to employ a concentration space transformation acquired from the spectral information, where these estimates are used together with the concentration profiles generated from the system kinetic model. Using blood glucose monitoring by Raman spectroscopy as an illustrative example, we demonstrate the efficacy of the proposed approach as compared to conventional calibration methods. Specifically, our approach exhibits a 35% reduction in error over partial least squares regression when applied to a dataset acquired from human subjects undergoing glucose tolerance tests. This method offers a new route at screening gestational diabetes and opens doors for continuous process monitoring without sample perturbation at intermediate time points.National Institute for Biomedical Imaging and Bioengineering (U.S.) (9P41EB015871-27)Kwansei Gakuin University (Grant 126004

    Exploring Large Language Models for Code Explanation

    Full text link
    Automating code documentation through explanatory text can prove highly beneficial in code understanding. Large Language Models (LLMs) have made remarkable strides in Natural Language Processing, especially within software engineering tasks such as code generation and code summarization. This study specifically delves into the task of generating natural-language summaries for code snippets, using various LLMs. The findings indicate that Code LLMs outperform their generic counterparts, and zero-shot methods yield superior results when dealing with datasets with dissimilar distributions between training and testing sets.Comment: Accepted at the Forum for Information Retrieval Evaluation 2023 (IRSE Track

    Multi-color reflectance imaging of middle ear pathology in vivo

    Get PDF
    Otoscopic examination using white-light illumination has remained virtually unchanged for well over a century. However, the limited contrast of white-light otoscopy constrains the ability to make accurate assessment of middle ear pathology and is subject to significant observer variability. Here, we employ a modified otoscope with multi-color imaging capabilities for superior characterization of the middle ear constituents in vivo and for enhanced diagnosis of acute otitis media and cholesteatoma. In this pilot study, five patients undergoing surgery for tympanostomy tube placement and congenital cholesteatoma excision were imaged using the custom-designed multi-color video-rate reflectance imaging system. We show that the multi-color imaging approach offers an increase in image contrast, thereby enabling clear visualization of the middle ear constituents, especially of the tympanic membrane vascularity. Differential absorption at the multiple wavelengths provides a measure of biochemical and morphological information, and the rapid acquisition and analysis of these images aids in objective evaluation of the middle ear pathology. Our pilot study shows the potential of using label-free narrow-band reflectance imaging to differentiate middle ear pathological conditions from normal middle ear. This technique can aid in obtaining objective and reproducible diagnoses as well as provide assistance in guiding excisional procedures.Connecticut Institute for Clinical and Translational Science (CICATS)Johns Hopkins University. Whiting School of Engineering (Startup Funds

    Prevalence of dengue and diversity of cultivable bacteria in vector Aedes aegypti (L.) from two dengue endemic districts, Kanchanpur and Parsa of Nepal

    Get PDF
    Background: Dengue fever, an endemic arboviral disease, represents one of the major public health concerns in Nepal. It is transmitted by bites of infected Aedes aegypti and Aedes albopictus , the former being primary vector. The bacterial community plays a significant role in biology of mosquitoes; however, the bacterial communities of primary vector A. aegypti remain unstudied in Nepal. The study was designed to determine the rate of dengue seropositivity and to explore the bacterial diversity of A. aegypti from dengue endemic districts, Kanchanpur and Parsa of Nepal. Methods: A cross-sectional study was conducted between June 2013 and November 2013 at two hospitals of Kanchanpur and Parsa. A total of 221 serum samples were collected from patients (inpatients and outpatients) suspected of suffering from dengue fever and attending Mahakali Zonal Hospital, Mahendranagar, Kanchanpur, and Narayani Zonal Hospital, Birgunj, Parsa. Detection of anti-dengue IgM was performed by using human dengue IgM capture ELISA. The larvae and pupae of mosquitoes (A. aegypti) were collected, reared, and emerged. Then, the bacteria were isolated and identified from the gut of identified mosquitoes by using standard methods. Results: Out of total 221 serum samples collected from patients suspected of suffering from dengue fever, 34 (15.38%) were positive for anti-dengue IgM. Gram-negative bacteria were isolated in largest proportion (63%) followed by gram-positive cocci (23.27%) and gram-positive rods (13.73%). The most common cultivable bacteria isolated were Staphylococcus spp., Pseudomonas spp., and Acinetobacter spp. The average bacterial load in the vectors was 3.91 7 104 cfu/ml. Conclusions: High rate of anti-dengue IgM seropositivity was reported in our study. The environmental bacteria were predominantly isolated and identified in A. aegypti. The paratransgenic approach to control vector might be possible by spreading the genetically modified bacteria in larval habitat or shelter of adult mosquitoes

    Transcending toward Advanced 3D-Cell Culture Modalities: A Review about an Emerging Paradigm in Translational Oncology

    No full text
    Cancer is a disorder characterized by an uncontrollable overgrowth and a fast-moving spread of cells from a localized tissue to multiple organs of the body, reaching a metastatic state. Throughout years, complexity of cancer progression and invasion, high prevalence and incidence, as well as the high rise in treatment failure cases leading to a poor patient prognosis accounted for continuous experimental investigations on animals and cellular models, mainly with 2D- and 3D-cell culture. Nowadays, these research models are considered a main asset to reflect the physiological events in many cancer types in terms of cellular characteristics and features, replication and metastatic mechanisms, metabolic pathways, biomarkers expression, and chemotherapeutic agent resistance. In practice, based on research perspective and hypothesis, scientists aim to choose the best model to approach their understanding and to prove their hypothesis. Recently, 3D-cell models are seen to be highly incorporated as a crucial tool for reflecting the true cancer cell microenvironment in pharmacokinetic and pharmacodynamics studies, in addition to the intensity of anticancer drug response in pharmacogenomics trials. Hence, in this review, we shed light on the unique characteristics of 3D cells favoring its promising usage through a comparative approach with other research models, specifically 2D-cell culture. Plus, we will discuss the importance of 3D models as a direct reflector of the intrinsic cancer cell environment with the newest multiple methods and types available for 3D-cells implementation

    Nanobiomaterials for vascular biology and wound management: a review

    Get PDF
    Nanobiomaterials application into tissue repair and ulcer management is experiencing its golden age due to spurring diversity of translational opportunity to clinics. Over the past years, research in clinical science has seen a dramatic increase in medicinal materials at nanoscale those significantly contributed to tissue repair. This chapter outlines the new biomaterials at nanoscale those contribute state of the art clinical practices in ulcer management and wound healing due to their superior properties over traditional dressing materials. Designing new recipes for nanobiomaterials for tissue engineering practices spanning from micro to nano-dimension provided an edge over traditional wound care materials those mimic tissue in vivo. Clinical science stepped into design of artificial skin and extracellular matrix (ECM) components emulating the innate structures with higher degree of precision. Advances in materials sciences polymer chemistry have yielded an entire class of new nanobiomaterials ranging from dendrimer to novel electrospun polymer with biodegradable chemistries and controlled molecular compositions assisting wound healing adhesives, bandages and controlled of therapeutics in specialized wound care. Moreover, supportive regenerative medicine is transforming into rational, real and successful component of modern clinics providing viable cell therapy of tissue remodeling. Soft nanotechnology involving hydrogel scaffold revolutionized the wound management supplementing physicobiochemical and mechanical considerations of tissue regeneration. Moreover, this chapter also reviews the current challenges and opportunities in specialized nanobiomaterials formulations those are desirable for optimal localized wound care considering their in situ physiological microenvironment

    Traditional Herbal Remedies with a Multifunctional Therapeutic Approach as an Implication in COVID-19 Associated Co-Infections

    No full text
    Co-infection in patients with viral infection as a predisposing factor is less focused on during epidemic outbreaks, resulting in increased morbidity and mortality. Recent studies showed that patients with coronavirus disease 2019 (COVID-19) often have both bacterial and fungal co-infections. In this study, sputum samples of 120 OPD (outdoor patients) suffering from respiratory tract infection (RTI) but negative for tuberculosis infection were collected with informed consent. Morphological, biochemical, and resistance criteria were used to classify isolates and to distinguish multidrug resistant (MDR) isolates, which were further classified on a molecular basis. We found that the isolates, including MDR strains, showed remarkable sensitivity against acetone and methanol extracts of Moringa oleifera, Adhatoda vasica, and Cassia fistula. The results strongly confirmed that multifactorial infections can produce MDR characteristics against antimicrobial drugs, which gave insight into the use of herbal drugs with their age-old traditional importance as having antiviral, antibacterial, antifungal, anti-inflammatory, and immunomodulatory effects. We conclude that apart from this, the anti-infective potential of these plants can be used in the future in the form of products such as cosmetics, pharmaceutical coatings, surface coatings, drug delivery vehicle coatings, and other bioengineered coatings for public use. Future studies are required to assess therapeutics for co-infective resistant strains and nosocomial infections with immune-enhancing effects, thereby promoting their function in holistic treatment and therapy of COVID-19 patients

    Mesalazine based topical hydrogel formulation enhances anti-oxidant and cytokine activity in wounded STZ-induced mice

    No full text
    Background: The present study is targeted to elucidate the wound healing potential of mesalazine in STZ induced diabetic mice by comparing various antioxidant, pro-inflammatory cytokine levels and other wound healing parameters at 3,7 and 14th day. Methods: Full thickness excisional wounds of 6mm size were created on the dorsal side of STZ induced mice and topical treatment of mesalazine based different hydrogels was applied for 14 days. Wound tissues were excised on day 3, 7 and 14 for various wound healing parameters. Results: Delayed in wound healing was observed in diabetic group which eventually got accelerated after application of ethosome based mesalazine loaded hydrogel designated as D5 in study. Significant wound contraction rate was observed in D5 group and tissue hydroxyproline and tensile strength was also elevated after treatment with mesalazine loaded ethosomal hydrogel. The level of ROS was found to be significantly decreased in SOD, CAT and GSH experiment. LPO level were found to be elevated in D5 group. Finding of levels of pro-inflammatory cytokine suggested significant decrease and showed significant elevation in vascular endothelial growth factor (VEGF).  Conclusion: D5 group of ethosome based mesalazine loaded hydrogel showed promising results in controlling all the factors to their normal range and was effective in accelerating wound 51healing in diabetic mice.  Keywords: Diabetic wounds; hydrogels; antioxidants; cytokines; VEGF; Mesalazin

    Validating Anti-Infective Activity of Pleurotus Opuntiae via Standardization of Its Bioactive Mycoconstituents through Multimodal Biochemical Approach

    No full text
    Mushrooms produce a variety of bioactive compounds that are known to have anti-pathogenic properties with safer and effective therapeutic effects in human disease prognosis. The antibacterial activity of ethanol and methanol extracts of Pleurotus opuntiae were checked against pathogenic microorganisms viz. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis NCIM 2300, Proteus vulgaris NCIM 5266, Serratia marcescens NCIM 2078, Shigella flexeneri NCIM 5265, Moraxella sp. NCIM 2795, Staphylococcus aureus ATCC 25923 by agar well diffusion method at different concentrations of the extracts. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts was determined by INT (Iodonitrotetrazolium chloride) colorimetric assay. Extracts were standardized by thin layer chromatography (TLC) in different solvent systems. The Retention factors (Rf) of different compounds were calculated by high performance TLC (HPTLC) fingerprinting at UV 254, 366, and 540 nm before and after derivatization. The ethanol and methanol extracts of P. opuntiae showed bactericidal activity against all the test pathogens at MIC values of 15.6 to 52.08 mg/mL and 20.81 to 52.08 mg/mL respectively. Whereas the MBC values for ethanol and methanol extract of P. opuntiae against all pathogens were recorded as 26.03 to 62.5 mg/mL and 125 mg/mL respectively. Preliminary mycochemical screening of both the extracts revealed high contents of bioactive compounds. Amongst all the solvent systems used in TLC, the best result was given by chloroform + hexane (8:2) which eluted out 5 different compounds (spots). HPTLC results revealed spots with different Rf values for all the 24 compounds present. Thus, it can be inferred from the present investigation that the mycoconstituents could be an alternative medication regimen and could play a role in new drug discoveries against different infections. Further, the antimicrobial components of these mushrooms can be transformed to bioengineered antimicrobial coatings for surfaces, drug and other hybrid systems for public health implications in combating persistent infections
    corecore