13 research outputs found

    Recombinant Haplotypes Narrow the ARMS2/HTRA1 Association Signal for Age-Related Macular Degeneration

    Get PDF
    The authors thank Paul N. Baird (Ocular Genetics Unit, Centre for Eye Research, Australia) for critically reading the manuscript. The work was funded in part by grants from the German Federal Ministry of Education and Research (BMBF 01ER1206 and 01ER1507) to I.M.H., by the institutional budget for Research and Teaching from the Freestate of Bavaria and the German Research Foundation (WE 1259/19-2) to BHFW.Peer reviewedPublisher PD

    Recombinant Haplotypes Narrow the ARMS2/HTRA1 Association Signal for Age-Related Macular Degeneration.

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness in ageing societies, triggered by both environmental and genetic factors. The strongest genetic signal for AMD with odds ratios of up to 2.8 per adverse allele was found previously over a chromosomal region in 10q26 harboring two genes, ARMS2 and HTRA1, although with little knowledge as to which gene or genetic variation is functionally relevant to AMD pathology. In this study, we analyzed rare recombinant haplotypes in 16,144 AMD cases and 17,832 controls from the International AMD Genomics Consortium and identified variants in ARMS2 but not HTRA1 to exclusively carry the AMD risk with P-values between 1.0 × 10-773 and 6.7 × 10-5 This now allows prioritization of the gene of interest for subsequent functional studies

    Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD)

    Get PDF
    Funding This research was funded by the Deutsche Forschungsgemeinschaft (GR5065/1-1) and institutional funds (Titel 77). Acknowledgments All contributing sites and additional funding information for the IAMDGC data are acknowledged in this publication: Fritsche et al. (2016) Nature Genetics 48 134–143, (doi:10.1038/ng.3448); The International AMD Genomics consortium’s web page is: http://eaglep.case.edu/iamdgc_web/, and additional information is available on: http://csg.sph.umich.edu/abecasis/public/amd2015/. GERA data came from a grant, the Resource for Genetic Epidemiology Research in Adult Health and Aging (RC2 AG033067; Schaefer and Risch, PIs) awarded to the Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics. The RPGEH was supported by grants from the Robert Wood Johnson Foundation, the Wayne and Gladys Valley Foundation, the Ellison Medical Foundation, Kaiser Permanente Northern California, and the Kaiser Permanente National and Northern California Community Benefit Programs. The RPGEH and the Resource for Genetic Epidemiology Research in Adult Health and Aging are described in the following publication, Schaefer C, et al., The Kaiser Permanente Research Program on Genes, Environment and Health: Development of a Research Resource in a Multi-Ethnic Health Plan with Electronic Medical Records, In preparation, 2013. This research has been conducted using the UK Biobank Resource under Application Number 44862. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health (commonfund.nih.gov/GTEx). Additional funds were provided by the NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Donors were enrolled at Biospecimen Source Sites funded by NCI\Leidos Biomedical Research, Inc. subcontracts to the National Disease Research Interchange (10XS170), Roswell Park Cancer Institute (10XS171), and Science Care, Inc. (X10S172). The Laboratory, Data Analysis, and Coordinating Center (LDACC) was funded through a contract (HHSN268201000029C) to The Broad Institute, Inc. Biorepository operations were funded through a Leidos Biomedical Research, Inc. subcontract to Van Andel Research Institute (10ST1035). Additional data repository and project management were provided by Leidos Biomedical Research, Inc. (HHSN261200800001E). The Brain Bank was supported supplements to University of Miami grant DA006227. Statistical Methods development grants were made to the University of Geneva (MH090941 & MH101814), the University of Chicago (MH090951, MH090937, MH101825, & MH101820), the University of North Carolina—Chapel Hill (MH090936), North Carolina State University (MH101819), Harvard University (MH090948), Stanford University (MH101782), Washington University (MH101810), and to the University of Pennsylvania (MH101822). The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000424.v8.p2.Peer reviewedPublisher PD

    Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD)

    No full text
    Genome-wide association studies (GWAS) have identified an abundance of genetic loci associated with complex traits and diseases. In contrast, in-depth characterization of an individual genetic signal is rarely available. Here, we focus on the genetic variant rs2168518 in 15q24.1 previously associated with age-related macular degeneration (AMD), but only with suggestive evidence. In a two-step procedure, we initially conducted a series of association analyses to further delineate the association of rs2168518 with AMD but also with other complex phenotypes by using large independent datasets from the International AMD Genomics Consortium (IAMDGC) and the UK Biobank. We then performed a functional annotation with reference to gene expression regulation based on data from the Genotype-Tissue Expression (GTEx) project and RegulomeDB. Association analysis revealed a gender-specific association with male AMD patients and an association predominantly with choroidal neovascularization. Further, the AMD association colocalizes with an association signal of several blood pressure-related phenotypes and with the gene expression regulation of CYP1A1, a member of the cytochrome P450 superfamily of monooxygenases. Functional annotation revealed altered transcription factor (TF) binding sites for gender-specific TFs, including SOX9 and SRY. In conclusion, the pleiotropic 15q24.1 association signal suggests a shared mechanism between blood pressure regulation and choroidal neovascularization with a potential involvement of CYP1A1

    Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration: A Mendelian Randomization Study.

    Get PDF
    IMPORTANCE: Advanced age-related macular degeneration (AMD) is a leading cause of blindness in Western countries. Causal, modifiable risk factors need to be identified to develop preventive measures for advanced AMD. OBJECTIVE: To assess whether smoking, alcohol consumption, blood pressure, body mass index, and glycemic traits are associated with increased risk of advanced AMD. DESIGN, SETTING, PARTICIPANTS: This study used 2-sample mendelian randomization. Genetic instruments composed of variants associated with risk factors at genome-wide significance (P < 5 × 10-8) were obtained from published genome-wide association studies. Summary-level statistics for these instruments were obtained for advanced AMD from the International AMD Genomics Consortium 2016 data set, which consisted of 16 144 individuals with AMD and 17 832 control individuals. Data were analyzed from July 2020 to September 2021. EXPOSURES: Smoking initiation, smoking cessation, lifetime smoking, age at smoking initiation, alcoholic drinks per week, body mass index, systolic and diastolic blood pressure, type 2 diabetes, glycated hemoglobin, fasting glucose, and fasting insulin. MAIN OUTCOMES AND MEASURES: Advanced AMD and its subtypes, geographic atrophy (GA), and neovascular AMD. RESULTS: A 1-SD increase in logodds of genetically predicted smoking initiation was associated with higher risk of advanced AMD (odds ratio [OR], 1.26; 95% CI, 1.13-1.40; P < .001), while a 1-SD increase in logodds of genetically predicted smoking cessation (former vs current smoking) was associated with lower risk of advanced AMD (OR, 0.66; 95% CI, 0.50-0.87; P = .003). Genetically predicted increased lifetime smoking was associated with increased risk of advanced AMD (OR per 1-SD increase in lifetime smoking behavior, 1.32; 95% CI, 1.09-1.59; P = .004). Genetically predicted alcohol consumption was associated with higher risk of GA (OR per 1-SD increase of log-transformed alcoholic drinks per week, 2.70; 95% CI, 1.48-4.94; P = .001). There was insufficient evidence to suggest that genetically predicted blood pressure, body mass index, and glycemic traits were associated with advanced AMD. CONCLUSIONS AND RELEVANCE: This study provides genetic evidence that increased alcohol intake may be a causal risk factor for GA. As there are currently no known treatments for GA, this finding has important public health implications. These results also support previous observational studies associating smoking behavior with risk of advanced AMD, thus reinforcing existing public health messages regarding the risk of blindness associated with smoking

    Vitronectin and Its Interaction with PAI-1 Suggests a Functional Link to Vascular Changes in AMD Pathobiology

    No full text
    The pathogenesis of age-related macular degeneration (AMD), a frequent disorder of the central retina, is incompletely understood. Genome-wide association studies (GWAS) suggest a strong contribution of genomic variation in AMD susceptibility. Nevertheless, little is known about biological mechanisms of the disease. We reported previously that the AMD-associated polymorphism rs704C > T in the vitronectin (VTN) gene influences protein expression and functional aspects of encoded vitronectin, a human blood and extracellular matrix (ECM) protein. Here, we refined the association of rs704 with AMD in 16,144 cases and 17,832 controls and noted that rs704 is carried exclusively by the neovascular AMD subtype. Interaction studies demonstrate that rs704 affects the ability of vitronectin to bind the angiogenic regulator plasminogen activator inhibitor 1 (PAI-1) but has no influence on stabilizing its active state. Western blot analysis and confocal imaging reveal a strong enrichment of PAI-1 in the ECM of cultured endothelial cells and RPE cell line ARPE-19 exposed to vitronectin. Large-scale gene expression of VTN and PAI-1 showed positive correlations and a statistically significant increase in human retinal and blood tissues aged 60 years and older. Our results suggest a mechanism by which the AMD-associated rs704 variant in combination with ageing may contribute to the vascular complications in AMD
    corecore