220 research outputs found

    The Next Generation Space Telescope

    Get PDF
    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the programmatic approach needed to bring NGST into being. The essential points of this panel discussion have been incorporated into a series of recommendations that represent the conclusions of the workshop. Speakers were asked to provide manuscripts of their presentation. Those received were reproduced here with only minor editorial changes. The few missing papers have been replaced by the presentation viewgraphs. The discussion that follows each speaker's paper was derived from the question and answer sheets, or if unavailable, from the tapes of the meeting. In the latter case, the editors have made every effort to faithfully represent the discussion

    Spectroscopic Confirmation of Multiple Red Galaxy-Galaxy Mergers in MS1054-03 (z=0.83)

    Full text link
    We present follow-up spectroscopy of the galaxy cluster MS1054-03 (z=0.83) confirming that at least six of the nine merging galaxy pairs identified by van Dokkum et al. (1999) are indeed bound systems: they have projected separations of R_s<10 kpc and relative line-of sight velocities of dv<165 km/s. For the remaining three pairs, we were unable to obtain redshifts of both constituent galaxies. To identify a more objective sample of merging systems, we select bound red galaxy pairs (R_s<=30 kpc, dv<=300 km/s) from our sample of 121 confirmed cluster members: galaxies in bound red pairs make up 15.7+/-3.6% of the cluster population. The (B-K_s) color-magnitude diagram shows that the pair galaxies are as red as the E/S0 members and have a homogeneous stellar population. The red pair galaxies span a large range in luminosity and internal velocity dispersion to include some of the brightest, most massive members (L>L*, sigma>200 km/s); these bound galaxy pairs must evolve into E/S0 members by z~0.7. These results combined with MS1054's high merger fraction and reservoir of likely future mergers indicates that most, if not all, of its early-type members evolved from (passive) galaxy-galaxy mergers at z<~1.Comment: accepted by ApJ Letters; high resolution version of Fig. 2 available at http://www.exp-astro.phys.ethz.ch/tran/outgoing/ms1054mgrs.ps.g

    Ellipticals with Kinematically--Distinct Cores: WFPC2 Imaging of Globular Clusters

    Get PDF
    Here we present HST WFPC2 imaging of 14 kinematically--distinct core ellipticals to examine their globular cluster systems. In particular, we probe the galaxy central regions, for which we might expect to see the strongest signatures of some formation and destruction processes. These data substantially increase the number of extragalactic globular cluster systems studied to date. We find that the globular cluster luminosity, and color, vary only weakly, if at all, with galactocentric distance. The mean color of globular clusters are constant with globular cluster magnitude. Several clear trends are also present. Firstly, globular cluster colors are bluer (more metal poor by ~ 0.5 dex) than the underlying galaxy starlight at any given galactocentric distance. Second, we find a correlation over roughly ten magnitudes between the mean globular cluster metallicity and parent galaxy luminosity of the form Z goes as L^0.4. This relationship includes dwarf ellipticals, spiral galaxy bulges and giant ellipticals. Third, we find that globular cluster surface density distribution can be described by a core model, for which the core radius correlates with galaxy luminosity. Our results favor scenarios in which ellipticals form from massive, gas rich progenitors at early epochs. Detailed simulations of the formation of globular cluster systems would be valuable to draw firmer conclusions.Comment: text only is given here, 13 figures are available at http://www.ucolick.org/~forbes/home.html Paper accepted for publication in the Astrophysical Journa

    Optical Spectroscopy of Distant Red Galaxies

    Full text link
    We present optical spectroscopic follow-up of a sample of Distant Red Galaxies (DRGs) with K 2.3, in the Hubble Deep Field South, the MS 1054-03 field, and the Chandra Deep Field South. Spectroscopic redshifts were obtained for 15 DRGs. Only 2 out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in \Delta z/(1+z) of ~ 0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY (Brammer et al. 2008). Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K 2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z 2. In our photometric sample to K < 22.5, low-redshift DRGs are brighter in K than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in Av. Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.Comment: Accepted for publication in the Astrophysical Journal, 13 pages, 8 figures, 5 table
    corecore