56 research outputs found

    Response of Patient-Derived Non-Small Cell Lung Cancer Xenografts to Classical and Targeted Therapies Is Not Related to Multidrug Resistance Markers

    Get PDF
    Tumor cells that are nonsensitive to anticancer drugs frequently have a multidrug resistant (MDR) phenotype. Many studies with cell lines and patient material have been done to investigate the impact of different resistance markers at protein and mRNA level in drug resistance but with contradictory outcome. In the present study, 26 well-characterised patient-derived non-small cell lung cancer xenografts were used. The known chemosensitivity to etoposide, carboplatin, gemcitabine, paclitaxel and erlotinib was compared to the protein and mRNA expression of BCRP, LRP, MDR1, and MRP1. Further, four of these xenografts were short-term treated to analyse possible regulation mechanisms after therapeutic interventions. We found a borderline correlation between the bcrp mRNA expression and the response of xenografts to etoposide. All other constitutive mRNA and protein expression levels were not correlated to any drug response and were not significantly influenced by a short term treatment. The present results indicate that the expression levels of MDR proteins and mRNA investigated do not play an important role in the chemoresistance of NSCLC in the in vivo situation

    Physical properties and pharmacological activity in vitro and in vivo of optimised liposomes prepared from a new cancerostatic alkylphospholipid

    Get PDF
    AbstractLiposomes from octadecyl-(1,1-dimethyl-4-piperidino-4-yl)-phosphate (OPP), a new alkylphospholipid derivative with an improved cancerostatic activity, were prepared for the first time and the activity in vitro and in vivo was characterised. The formation of liposomes (MLV, SUV and LUVET) differing in cholesterol content, charge, and sterical stabilisation is possible without serious problems, despite the lysolipid-like structure of the OPP. Liposomes with a low amount of cholesterol and with PEG2000DSPE-coating were the most stable OPP liposomes, both in buffer and in serum. The cytotoxicity of micellar or liposomal OPP against breast cancer cell lines in vitro was in the range of 20–60 μM The cytotoxicity of the liposomal formulation was inversely related to the content of cholesterol, whereas the sterical stabilisation and/or the incorporation of a positive charge had only a very moderate modulating effect on the inhibition of cell proliferation. The strongest antitumour effect on the xenotransplanted breast cancer MT-3 in vivo was obtained with sterically stabilised OPP liposomes with low CH content. The beneficial therapeutic effect of these liposomes was accompanied by better tolerance and a significant inhibition of haemolysis compared to micellar OPP

    GIPC1 regulates MACC1-driven metastasis

    Get PDF
    Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis

    Cellular pharmacology of multi-and duplex drugs consisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine

    Get PDF
    In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation

    Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative

    Get PDF
    Background: The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Methods: Over a period of more than twenty years the EORTC—Cancer Research Campaign panel reviewed ~2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. Results: This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Conclusions: Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology

    Cellular pharmacology of multi- and duplex drugsconsisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine

    Get PDF
    Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2′deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK−. ETC-FdUrd was active (IC50 of 2.2 and 79 nM) in FM3A/0 and TK− cells, respectively. ETC-L-FdUrd was less active (IC50: 7 nM in FM3A/0 vs 4500 nM in FM3A/TK−). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC50:19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80–90%), but to a lower extent in FM3A/TK− (10–50%). FdUMP was hardly detected in FM3A/TK− cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation

    Development of Resistance towards Artesunate in MDA-MB-231 Human Breast Cancer Cells

    Get PDF
    Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFκB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFκB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors

    Inhibition of pulmonary metastasis in a human MT3 breast cancer xenograft model by dual liposomes preventing intravasal fibrin clot formation

    Full text link
    International audienceThe process of metastasis formation in cancer is not completely understood and is the main reason cancer therapies fail. Previously, we showed that dual liposomes simultaneously containing the hemostatic inhibitor, dipyridamole and the anticancer drug, perifosine potently inhibited metastasis, causing a 90% reduction in the number of lung metastases in a murine experimental metastasis model. To gain deeper insight into the mechanisms leading to the inhibition of metastasis by these dual liposomes, in the present study, the development of metastases by MT3 breast cancer cells in a mouse xenograft model was analyzed in more detail with regard to tumor cell settlement and metastatic growth. We found that the development of lung metastases by MT3 tumor cells is essentially dependent on the formation of fibrin clots as a precondition for the pulmonary arrest of tumor cells and the subsequent intravascular expansion of micrometastases before their invasion into the surrounding tissue

    Reduction of tamoxifen resistance in human breast carcinomas by tamoxifen-containing liposomes in vivo

    No full text
    We investigated whether it is possible to reduce anti-estrogen resistance using liposomally encapsulated tamoxifen in vivo. Small liposomal vesicles containing up to 5.1 mg tamoxifen/ml liposomal suspension, together with an alkylphospholipid to enhance the cellular uptake, were prepared and characterized. Mice transplanted with different tumor models were treated with tamoxifen liposomes administered i.p. or orally as a bolus dose of 50 mg/kg once a week or as a daily dose of 10 mg/kg/day, both during a 4-week period. After orally administered tamoxifen liposomes, tumor growth was significantly reduced for the 3366/tamoxifen (acquired resistance) and for the MCF-7 (inherent resistance) models to 47 and 16%, respectively (treated to control value of relative tumor volume). Intraperitoneal treatment with tamoxifen liposomes revealed similar results. Investigation of biodistribution revealed especially an accumulation of liposomal tamoxifen in MCF-7 tumors and livers of the treated mice. These liposomes had uterotrophic properties comparable to the dissolved compound. This study demonstrates for the first time that a liposomal formulation of tamoxifen was able to induce pharmacological effects and to improve the therapeutic efficacy in several anti-estrogen-resistant xenografts
    corecore