36 research outputs found

    Studies on Subunit Architecture of Dynein Complex

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 豊島 陽子, 東京大学准教授 新井 宗仁, 東京大学准教授 佐藤 健, 東京大学准教授 道上 達男, 東京大学准教授 矢島 潤一郎University of Tokyo(東京大学

    Identification and mapping of central pair proteins by proteomic analysis

    No full text
    Cilia or flagella of eukaryotes are small micro-hair like structures that are indispensable to single-cell motility and play an important role in mammalian biological processes. Cilia or flagella are composed of nine doublet microtubules surrounding a pair of singlet microtubules called the central pair (CP). Together, this arrangement forms a canonical and highly conserved 9+2 axonemal structure. The CP, which is a unique structure exclusive to motile cilia, is a pair of structurally dimorphic singlet microtubules decorated with numerous associated proteins. Mutations of CP-associated proteins cause several different physical symptoms termed as ciliopathies. Thus, it is crucial to understand the architecture of the CP. However, the protein composition of the CP was poorly understood. This was because the traditional method of identification of CP proteins was mostly limited by available Chlamydomonas mutants of CP proteins. Recently, more CP protein candidates were presented based on mass spectrometry results, but most of these proteins were not validated. In this study, we re-evaluated the CP proteins by conducting a similar comprehensive CP proteome analysis comparing the mass spectrometry results of the axoneme sample prepared from Chlamydomonas strains with and without CP complex. We identified a similar set of CP protein candidates and additional new 11 CP protein candidates. Furthermore, by using Chlamydomonas strains lacking specific CP sub-structures, we present a more complete model of localization for these CP proteins. This work has established a new foundation for understanding the function of the CP complex in future studies. Page 2 of 4

    Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins

    Get PDF
    Cilia, the hair-like protrusions that beat at high frequencies to propel a cell or move fluid around are composed of radially bundled doublet microtubules. In this study, we present a near-atomic resolution map of the Tetrahymena doublet microtubule by cryoelectron microscopy. The map demonstrates that the network of microtubule inner proteins weaves into the tubulin lattice and forms an inner sheath. From mass spectrometry data and de novo modeling, we identified Rib43a proteins as the filamentous microtubule inner proteins in the protofilament ribbon region. The Rib43a–tubulin interaction leads to an elongated tubulin dimer distance every 2 dimers. In addition, the tubulin lattice structure with missing microtubule inner proteins (MIPs) by sarkosyl treatment shows significant longitudinal compaction and lateral angle change between protofilaments. These results are evidence that the MIPs directly affect and stabilize the tubulin lattice. It suggests that the doublet microtubule is an intrinsically stressed filament and that this stress could be manipulated in the regulation of ciliary waveforms

    Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside

    No full text
    Microtubules play important roles in biological functions by forming superstructures, such as doublets and branched structures, in vivo. Despite the importance, it is challenging to construct these superstructures in vitro. Here, we designed a tetrameric fluorescent protein Azami-Green (AG) fused with His-tag and Tau-derived peptide (TP), TP-AG, to generate the superstructures. Main binding sites of TP-AG can be controlled to the inside and outside of microtubules by changing the polymerization conditions. The binding of TP-AG to the inside promoted microtubule formation and generated rigid and stable microtubules. The binding of TP-AG to the outside induced various microtubule superstructures, including doublets, multiplets, branched structures, and extremely long microtubules by recruiting tubulins to microtubules. Motile microtubule aster structures were also constructed by TP-AG. The generation of various microtubule superstructures by a single type of exogenous protein is a new concept for understanding the functions of microtubules and constructing microtubule-based nanomaterials
    corecore