85 research outputs found

    Translational medicine: from discovery to health

    Get PDF
    System requirements: Windows Media Player version 9 or above.Jamal Ibdah spoke on the topic "National Movement of Clinical and Translational Science and Drug Discovery.

    Intrinsic high aerobic capacity protects against lipid induced hepatic insulin resistance [abstract]

    Get PDF
    Hepatic steatosis is commonly linked to hepatic insulin resistance. However, recent studies have found that increased hepatic triacylglycerol (TAG) accumulation is not always associated with impaired hepatic insulin signaling, leading to a hypothesis that partitioning of lipids into TAG in the liver matched with high rates of fatty acid oxidation (FAO) under high lipid exposure conditions may protect against hepatic insulin resistance. We examined this hypothesis in the livers of high and low capacity running (HCR/LCR) rats which were created by artificial selection based on differences in intrinsic aerobic capacity

    Translational Approach to Examine the Importance of Aerobic Fitness on Nonalcoholic Fatty Liver Disease [abstract]

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster Session.Low cardiorespiratory fitness, independent of physical activity levels, is the best predictor of early mortality and is linked to type 2 diabetes and CVD. In the absence of exercise training, it is believed that genetic inheritance accounts for up to 70% of the variation in intrinsic aerobic fitness. Recent cross-sectional reports in humans also have linked low aerobic fitness with nonalcoholic fatty liver disease (NAFLD). NAFLD, fatty liver not due to alcohol consumption, encompasses a gamut of liver maladaptations and is a primary cause of chronic liver disease and liver-related morbidity and mortality. NAFLD occurs in ~30% of US adults, 75-100% of obese and extremely obese individuals, and is considered the hepatic component of the metabolic syndrome. Despite the recent observations in humans between low fitness and NAFLD, there is a paucity of mechanistic information detailing this link. In order to address this important clinical problem, we have developed an interdisciplinary team across multiple institutions and fields of study and have taken a translational approach, employing both novel whole animal model studies and isolated primary hepatocyte cell culture experiments, to gain mechanistic insight into the human observational studies. We have utilized a novel rat model in which rats are artificially selected over several generations for high and low intrinsic endurance capacity, resulting in high capacity runners (HCR) with high aerobic fitness and low capacity runners (LCR) with significantly lower aerobic fitness (Science, 307:418-20, 2005). These rats display contrasting phenotypes without the influence of exercise training, making them an excellent model to mechanistically assess the role of aerobic fitness on NAFLD. Utilizing this model, we have provided the first mechanistic evidence that the LCR rats have reduced hepatic mitochondrial content and oxidative capacity, increased hepatic de novo lipogenic profiles, and develop hepatic steatosis with progression to greater fibrosis and apoptosis compared to the HCR rats. The LCR rats also are unable to maintain systemic insulin sensitivity following exposure to high-fat feeding. However, since it is impossible to completely eliminate the influence of peripheral factors on liver metabolism, we have subsequently isolated primary hepatocytes from HCR and LCR rats. We have observed a similar phenotype in the primary hepatocytes from LCR animals, with significant reductions in fatty acid oxidation and the inability to maintain insulin signaling in response to lipid exposure compared with HCR hepatocytes. These findings have important clinical implications, as low aerobic fitness due to physical inactivity and/or genetic inheritability may lead to increased susceptibility to NAFLD, and suggest that the clinical measurement of aerobic fitness may serve as a valuable prognostic tool. We are currently conducting a human clinical trial to assess the efficacy of exercise in improving aerobic fitness and reducing NAFLD, and because exercise is the proven method to increase aerobic fitness, it should remain the cornerstone therapy for fatty liver disease

    Exercise and Omega-3 Polyunsaturated Fatty Acid Supplementation for the Treatment of Hepatic Steatosis in Hyperphagic OLETF Rats

    Get PDF
    Background and Aims. This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Methods. Male OLETF rats were divided into 4 groups (n=8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats. Results. EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO2 and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein. Conclusions. Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression of de novo fatty acid synthesis proteins while n3PUFAs had no effect

    Interdisciplinary Approach to Examine the Effects of Lifestyle Modifications on Nonalcoholic Fatty Liver Disease

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionA critical complication of the obesity epidemic experienced in Westernized societies is nonalcoholic fatty liver disease (NAFLD). NAFLD, fatty liver not due to alcohol consumption, is the most common chronic liver disease and associated with increasing morbidity, mortality, and demand for liver transplantation. NAFLD is a progressive disease with a histological spectrum ranging from hepatic steatosis to nonalcoholic steatohepatitis, advanced fibrosis, and cirrhosis. Approximately one third of all US adults (90 million) have fatty livers, with prevalence rates as high as 75-100% in the obese and morbidly obese. With growing health problems associated with NAFLD, major questions facing research scientists and health care providers are what are the mechanisms responsible for NAFLD development and what is the best treatment strategy. Since drug interventions appear to be only marginally successful, the cornerstone therapy for NAFLD remains lifestyle modifications of exercise and weight loss. However, while recent cross-sectional observations suggest that being more physically active is inversely associated with NAFLD, studies which attempt to identify molecular mechanisms underlying the effects of lifestyle modifications on NAFLD are lacking. To address these clinical questions, we have taken an interdisciplinary approach with collaborations from experts in multiple departments and facilities at the University of Missouri, including Nutrition and Exercise Physiology, Hepatology, Veterinary Biomedical Sciences, and VA investigators. In addition, we have utilized a unique animal model, the hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rat that develops obesity, insulin resistance and overt type 2 diabetes, a model which we liken to overeating, sedentary, obese humans. Through a series of experiments, we found that the natural progression pattern of fatty liver disease in the sedentary OLETF rat closely resembles the human condition (progression from simple hepatic steatosis to hepatocyte ballooning, fibrosis, and inflammation). We also have compelling evidence that hepatic mitochondrial dysfunction is present at an early age and mitochondrial content, function, and mitochondrial health are disrupted with disease progression, suggesting a potential primary event in NAFLD in this animal model. However and perhaps even more important, when OLETF rats are given access to voluntary running wheels and allowed to exercise daily, the initiation and progression of NAFLD is completely prevented. These benefits occur through modification in both peripheral and hepatic factors, including maintenance of glycemic control and enhancement of hepatic mitochondrial content and function. We are currently in the process of translating these very exciting findings in a randomized, human clinical trial examining the impact of different lifestyle modifications in the treatment of NAFLD. Findings from our research group have important public health application, particularly for the 60-80% of Americans who overeat, who are overweight, and who are physically inactive

    Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation

    Get PDF
    This article may also be found at the publisher's website at http://hyper.ahajournals.org/cgi/content/abstract/53/2/158?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=habibi&searchid=1&FIRSTINDEX=0&resourcetype=HWCITEmerging evidence indicates that mineralocorticoid receptor (MR) blockade reduces the risk of cardiovascular events beyond those predicted by its blood pressure-lowering actions; however, the underlying mechanisms remain unclear. To investigate whether protection elicited by MR blockade is through attenuation of vascular apoptosis and injury, independently of blood pressure lowering, we administered a low dose of the MR antagonist spironolactone or vehicle for 21 days to hypertensive transgenic Ren2 rats with elevated plasma aldosterone levels. Although Ren2 rats developed higher systolic blood pressures compared with Sprague-Dawley littermates, low-dose spironolactone treatment did not reduce systolic blood pressure compared with untreated Ren2 rats. Ren2 rats exhibited vascular injury as evidenced by increased apoptosis, hemidesmosome-like structure loss, mitochondrial abnormalities, and lipid accumulation compared with Sprague-Dawley rats, and these abnormalities were attenuated by MR antagonism. Protein kinase B activation is critical to vascular homeostasis via regulation of cell survival and expression of apoptotic genes. Protein kinase B serine473 phosphorylation was impaired in Ren2 aortas and restored with MR antagonism. In vivo MR antagonist treatment promoted antiapoptotic effects by increasing phosphorylation of BAD serine136 and expression of Bcl-2 and Bcl-xL, decreasing cytochrome c release and BAD expression, and suppressing caspase-3 activation. Furthermore, MR antagonism substantially reduced the elevated NADPH oxidase activity and lipid peroxidation, expression of angiotensin II, angiotensin type 1 receptor, and MR in Ren2 vasculature. These results demonstrate that MR antagonism protects the vasculature from aldosterone-induced vascular apoptosis and structural injury via rescuing protein kinase B activation, independent of blood pressure effects

    Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Get PDF
    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G\u3eC) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency

    Acute fatty liver of pregnancy: An update on pathogenesis and clinical implications

    No full text

    Note of Concern

    No full text
    • …
    corecore