31 research outputs found

    Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding

    Get PDF
    Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to Ξ”Cp in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The Ξ”Cp of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of Ξ”Cp by 0.8–1.0 kJ molβˆ’1 Kβˆ’1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing Ξ”Cp, leading to the up-shifting and broadening of the protein stability curves

    Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    Get PDF
    CAPRISA, 2014.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development

    A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes

    No full text
    Crop adaptation to abiotic stresses requires alterations in expression of a large number of stress protection genes and their regulators, including transcription factors. In this study, the expression levels of ten MYB transcription factor genes from wheat (Triticum aestivum) were examined in two recombinant inbred lines contrasting in their salt tolerance in response to salt or drought stress. Quantitative RT-PCR analysis revealed that four MYB genes were consistently up-regulated in the seedling roots of both genotypes under short-term salt treatment. Three MYB genes were found to be up-regulated in both genotypes under long-term salt stress. One MYB gene was up-regulated in both genotypes under both short- and long-term salt stress. Of these salt up-regulated MYB genes, one MYB gene (TaMYBsdu1) was markedly up-regulated in the leaf and root of wheat under long-term drought stress. In addition, TaMYBsdu1 showed higher expression levels in the salt-tolerant genotype than in the susceptible genotype under salt stress. These data suggest that TaMYBsdu1 is a potentially important regulator involved in wheat adaptation to both salt and drought stresses

    The Impact of Reduced-Volume, Intensity-Modulated Radiation Therapy on Disease Control in Nasopharyngeal Carcinoma

    No full text
    OBJECTIVE:To investigate the feasibility of using intensity-modulated radiotherapy (IMRT) with reduced, high-dose target volumes for nasopharyngeal carcinoma (NPC). METHODS:The first 57 patients (admitted from October 2005 to May 2008) were treated with large-target-volume IMRT (LV-IMRT). For the LV-IMRT group, the CTV at 70 Gy (CTV70) was delineated as the gross target volume (GTV) plus 7mm, with or without the first-echelon lymph-node region. The next 56 patients (admitted from June 2008 to November 2011) were treated with reduced-target-volume IMRT (RV-IMRT). For the RV-IMRT group, the CTV70 was delineated as the GTV alone. RESULTS:The 4-year local recurrence-free, regional recurrence-free, distant metastasis-free, progression-free, and overall survival rates were 77.2%, 80.1%, 83.2%, 61.2%, and 74.4% for the LV-IMRT group and 83.5%, 92.6%, 89.1%, 78.5, and 91.0% for the RV-IMRT group, respectively. Late toxicity scoring of xerostomia was lesser in the RV-IMRT group than the LV-IMRT group (P < 0.001). CONCLUSIONS:The use of RV-IMRT for the treatment of NPC did not negatively affect survival rates but did reduce the late xerostomia events compared to LV-IMRT
    corecore