644 research outputs found

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    Invertebrate 7SK snRNAs

    Get PDF
    7SK RNA is a highly abundant noncoding RNA in mammalian cells whose function in transcriptional regulation has only recently been elucidated. Despite its highly conserved sequence throughout vertebrates, all attempts to discover 7SK RNA homologues in invertebrate species have failed so far. Here we report on a combined experimental and computational survey that succeeded in discovering 7SK RNAs in most of the major deuterostome clades and in two protostome phyla: mollusks and annelids. Despite major efforts, no candidates were found in any of the many available ecdysozoan genomes, however. The additional sequence data confirm the evolutionary conservation and hence functional importance of the previously described 3′ and 5′ stem-loop motifs, and provide evidence for a third, structurally well-conserved domain

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    An HR-MAS MR Metabolomics Study on Breast Tissues Obtained with Core Needle Biopsy

    Get PDF
    BACKGROUND: Much research has been devoted to the development of new breast cancer diagnostic measures, including those involving high-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopic techniques. Previous HR-MAS MR results have been obtained from post-surgery samples, which limits their direct clinical applicability. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed HR-MAS MR spectroscopic studies on 31 breast tissue samples (13 cancer and 18 non-cancer) obtained by percutaneous core needle biopsy. We showed that cancer and non-cancer samples can be discriminated very well with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA) multivariate model on the MR spectra. A subsequent blind test showed 69% sensitivity and 94% specificity in the prediction of the cancer status. A spectral analysis showed that in cancer cells, taurine- and choline-containing compounds are elevated. Our approach, additionally, could predict the progesterone receptor statuses of the cancer patients. CONCLUSIONS/SIGNIFICANCE: HR-MAS MR metabolomics on intact breast tissues obtained by core needle biopsy may have a potential to be used as a complement to the current diagnostic and prognostic measures for breast cancers

    Therapeutic Effects of Autologous Tumor-Derived Nanovesicles on Melanoma Growth and Metastasis

    Get PDF
    Cancer vaccines with optimal tumor-associated antigens show promise for anti-tumor immunotherapy. Recently, nano-sized vesicles, such as exosomes derived from tumors, were suggested as potential antigen candidates, although the total yield of exosomes is not sufficient for clinical applications. In the present study, we developed a new vaccine strategy based on nano-sized vesicles derived from primary autologous tumors. Through homogenization and sonication of tumor tissues, we achieved high yields of vesicle-bound antigens. These nanovesicles were enriched with antigenic membrane targets but lacked nuclear autoantigens. Furthermore, these nanovesicles together with adjuvant activated dendritic cells in vitro, and induced effective anti-tumor immune responses in both primary and metastatic melanoma mouse models. Therefore, autologous tumor-derived nanovesicles may represent a novel source of antigens with high-level immunogenicity for use in acellular vaccines without compromising safety. Our strategy is cost-effective and can be applied to patient-specific cancer therapeutic vaccination

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice
    corecore