13 research outputs found

    Recent developments in the ISTTOK heavy ion beam diagnostic

    Get PDF
    The heavy ion beam diagnostic (HIBD) presents a powerful tool for investigations of hot plasmas in thermonuclear devices with magnetic confinement. When injected into the plasma, the primary probing beam of singly charged positive ions is ionized to a doubly charged state by impact with the plasma electrons and separated from the primaries due to the confining magnetic field of the plasma device. The resulting secondary ions are collected outside the plasma. The plasma parameters that can be measured by the HIBD are: the plasma electron density and temperature, and the electric and magnetic potentials. On the small tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, Ip = 4…6 kA, = 5 × 10¹⁸ m ⁻³ , Te = 120 eV), the HIBD is based on a 20 keV Xe⁺ (or Cs⁺ ) beam injector and a multiple cell array detector (MCAD) collecting a fan of secondary Xe²⁺ (or Cs²⁺) ions emerging from the plasma along the primary beam trajectory. This paper describes the recent developments and improvements in the ISTTOK HIBD secondary beam detection. The capabilities of new detection system are illustrated by recent results of ISTTOK plasma MHD activity and electrode biasing studies. The on going developments of the multichannel multi-slit 90o cylindrical energy analyzer for the plasma potential and its fluctuations measurements and a novel approach of the HIBD use in real-time vertical plasma position control are also considered.Диагностика пучком тяжёлых ионов (ДПТИ) является мощным инструментом в исследованиях горячей плазмы в термоядерных установках с магнитным удержанием. Инжектируемый в плазму первичный пучок однозарядных положительных ионов ионизируется в двухзарядное состояние в столкновениях с электронами плазмы. В магнитном поле плазменной установки результирующие вторичные ионы отделяются от первичного пучка и детектируются вне плазмы. Измеряемые ДПТИ параметры плазмы включают плотность, температуру электронов, электрический и магнитный потенциалы. На малом токамаке ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, = 5 × 10¹⁸ м ⁻³, Te = 120 эВ) ДПТИ состоит из 20 кэВ инжектора Xe ⁺ (или Cs⁺) пучка и мультиколлекторного детектора (МКД) вторичных Хе²⁺ (или Cs²⁺ионов, выходящих из плазмы вдоль траектории первичного пучка. Описываются изменения и улучшения детекторной системы ДПТИ на токамаке ISTTOK. Возможности новой детекторной системы иллюстрируются недавними результатами исследований МГД-активности и поляризации плазмы. Рассматриваются также разработка многоканального мультищелевого 90o цилиндрического анализатора энергии для измерений потенциала плазмы и его флуктуаций и новый подход использования ДПТИ для контроля вертикального положения плазмы в режиме реального времени.Діагностика пучком важких іонів (ДПВІ) є потужним інструментом у дослідженнях гарячої плазми в термоядерних установках з магнітним утриманням. Iнжектований в плазму первинний пучок однозарядних позитивних іонів іонізується в двозарядний стан у зіткненнях з електронами плазми. У магнітному полі плазмової установки результуючі вторинні іони відокремлюються від первинного пучка і фіксуються поза плазми. Вимірювані ДПВІ параметри плазми включають щільність, температуру електронів, електричний і магнітний потенціали. На малому токамацi ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, = 5×10¹⁸ м ⁻³, Te = 120 еВ) ДПВІ складається з 20 кеВ інжектора Xe+ (або Cs+ ) пучка і мультиколекторного детектора (МКД) вторинних Хе²⁺ (або Cs²⁺) іонів, які виходять з плазми уздовж траєкторії первинного пучка. Описуються зміни і поліпшення детекторной системи ДПВІ на токамацi ISTTOK. Можливості нової детекторної системи ілюструються недавніми результатами досліджень МГД-активності і поляризації плазми. Розглядаються також розробка багатоканального мультищілинного 90o циліндричного аналізатора енергії для вимірювань потенціалу плазми та його флуктуацій і новий підхід використання ДПВІ для контролю вертикального положення плазми в режимі реального час

    Retarding field energy analyzers for ion temperature measurements in the boundary plasmas of the tokamak ISTTOK and TJ-II stellarator

    No full text
    The retarding field energy analyzer (RFEA) remains the more reliable diagnostic to measure the ion temperature in the boundary plasmas of magnetic fusion devices. A compact, simple design RFEA have been developed for investigations on the tokamak ISTTOK and TJ-II stellarator. More recently a five-channel RFEA has been successfully tested allowing the simultaneous measurement of the ion temperature profile. The conditions of the RFEA operation in poor alignment along magnetic field are considered.Аналізатор енергії з затримуючим потенціалом (АЕЗП) залишається найбільш надійним діагностичним пристроєм для виміру температури іонів поблизу границі плазми термоядерних установок з магнітним утриманням. Компактний простий пристрій АЕЗП розроблено для досліджень на токамаці ISTTOK і стеллараторі TJ-II. Порівняно недавно п’ятиканальный АЕЗП був успішно випробуваний і дозволяє здійснювати синхронні виміри профілю температури іонів. Визначено умови роботи АЕЗП при поганій орієнтації його уздовж магнітного поля.Анализатор энергии с задерживающим потенциалом (АЭЗП) остается наиболее надежным диагностическим устройством для измерения температуры ионов вблизи границы плазмы термоядерных установок с магнитным удержанием. Компактное простое устройство АЭЗП разработано для исследований на токамаке ISTTOK и стеллараторе TJ-II. Сравнительно недавно пятиканальный АЭЗП был успешно испытан и позволяет осуществлять синхронные измерения профиля температуры ионов. Определены условия работы АЭЗП при плохой ориентации его вдоль магнитного поля

    TOF method in plasma potential measurements by HIBD

    No full text
    The heavy ion beam diagnostic (HIBD) developed for the tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, I = 6-9 kA) is based on a multiple cell array detector (MCAD), which collects simultaneously a “fan” of secondary ions originated along a primary beam trajectory in collisions with the plasma electrons and separated by the magnetic field of the tokamak. Utilization of the traditional electrostatic energy spectrographs for the plasma potential measurements in experiments with MCAD is very complicated. This paper presents the current results of adaptation and mastering of the alternative time-of-flight (TOF) technique. Three schemes of the measurements are considered: i) “integral” scheme of the average plasma potential measurements by a pulsed primary beam, ii) “quasi-local” scheme of the measurements of plasma potential drop between neighbouring sample volumes, and iii) “local” scheme of plasma potential profile measurements. The electronics used in TOF energy analyzer (TOFEA) consist of charge sensitive and fast shaping amplifiers, constant fraction discriminator and time-toamplitude converter with resolution ∆t/t = 10⁻⁴. The TOFEA resolution ∆t/t = 3×10⁻⁴ has been achieved in mastering experiments with a pulsed (250 ns) primary beam carried out to the primary detector in magnetic field of the tokamak. With plasma the resolution is reduced 2.5 times due to decreasing of signal-to-noise ratio caused by plasma loading of MCAD. The changes of the average plasma potential during discharges with minor disruptions have been obtained by TOF energy analysis. The results of this experiment allow to conclude the reliability of TOF technique in plasma potential measurements by HIBD with MCAD. On the base of the obtained data and experience a four-channel TOFEA for the plasma potential profile measurements has been elaborated

    Perturbative transport experiments on TJ-II Flexible Heliac

    No full text
    Transport properties of TJ-II are explored performing perturbative experiments and taking advantage of TJ-II flexibility. Rotational transform can be varied in a wide range, which allows one to introduce low order rationals and to study their effect on transport. On the other hand, confinement properties can be studied at very different rotational transform values and for different values of magnetic shear: Experiments on influence of the magnetic shear on confinement are reported. In these cases a Ohmic current has been induced in TJ-II plasma to modify magnetic shear and to evaluate itsd effect on confinement, showing that negative shear improves the confinement. Heat transport is also reduced by locating a low order rational near the power deposition profile. Plasma potential profiles have been recently measured in some configurations up to the plasma core with the Heavy Ion Beam Probe (HIBP) diagnostic and the electric field values measured in low-density plasmas are consistent with neoclassical calculations near the plasma core. Plasma edge turbulent transport has been studied in configurations that are marginally stable due to decreased magnetic well. Results show a dynamical coupling between gradients and turbulent transport. Finally, cold pulse propagation has been studied showing ballistic non diffusive propagation

    3D effects on transport and plasma control in the TJ-II stellarator

    No full text
    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals
    corecore