254 research outputs found

    On stochasticity in nearly-elastic systems

    Full text link
    Nearly-elastic model systems with one or two degrees of freedom are considered: the system is undergoing a small loss of energy in each collision with the "wall". We show that instabilities in this purely deterministic system lead to stochasticity of its long-time behavior. Various ways to give a rigorous meaning to the last statement are considered. All of them, if applicable, lead to the same stochasticity which is described explicitly. So that the stochasticity of the long-time behavior is an intrinsic property of the deterministic systems.Comment: 35 pages, 12 figures, already online at Stochastics and Dynamic

    Fisher Information for Inverse Problems and Trace Class Operators

    Full text link
    This paper provides a mathematical framework for Fisher information analysis for inverse problems based on Gaussian noise on infinite-dimensional Hilbert space. The covariance operator for the Gaussian noise is assumed to be trace class, and the Jacobian of the forward operator Hilbert-Schmidt. We show that the appropriate space for defining the Fisher information is given by the Cameron-Martin space. This is mainly because the range space of the covariance operator always is strictly smaller than the Hilbert space. For the Fisher information to be well-defined, it is furthermore required that the range space of the Jacobian is contained in the Cameron-Martin space. In order for this condition to hold and for the Fisher information to be trace class, a sufficient condition is formulated based on the singular values of the Jacobian as well as of the eigenvalues of the covariance operator, together with some regularity assumptions regarding their relative rate of convergence. An explicit example is given regarding an electromagnetic inverse source problem with "external" spherically isotropic noise, as well as "internal" additive uncorrelated noise.Comment: Submitted to Journal of Mathematical Physic

    Spectral Analysis of Multi-dimensional Self-similar Markov Processes

    Full text link
    In this paper we consider a discrete scale invariant (DSI) process {X(t),tR+}\{X(t), t\in {\bf R^+}\} with scale l>1l>1. We consider to have some fix number of observations in every scale, say TT, and to get our samples at discrete points αk,kW\alpha^k, k\in {\bf W} where α\alpha is obtained by the equality l=αTl=\alpha^T and W={0,1,...}{\bf W}=\{0, 1,...\}. So we provide a discrete time scale invariant (DT-SI) process X()X(\cdot) with parameter space {αk,kW}\{\alpha^k, k\in {\bf W}\}. We find the spectral representation of the covariance function of such DT-SI process. By providing harmonic like representation of multi-dimensional self-similar processes, spectral density function of them are presented. We assume that the process {X(t),tR+}\{X(t), t\in {\bf R^+}\} is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally we find the spectral density matrix of such DT-SIM process and show that its associated TT-dimensional self-similar Markov process is fully specified by {RjH(1),RjH(0),j=0,1,...,T1}\{R_{j}^H(1),R_{j}^H(0),j=0, 1,..., T-1\} where RjH(τ)R_j^H(\tau) is the covariance function of jjth and (j+τ)(j+\tau)th observations of the process.Comment: 16 page

    Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach

    Full text link
    This paper describes a novel numerical approach to find the statistics of the non-stationary response of scalar non-linear systems excited by L\'evy white noises. The proposed numerical procedure relies on the introduction of an integral transform of Wiener-Hopf type into the equation governing the characteristic function. Once this equation is rewritten as partial integro-differential equation, it is then solved by applying the method of convolution quadrature originally proposed by Lubich, here extended to deal with this particular integral transform. The proposed approach is relevant for two reasons: 1) Statistics of systems with several different drift terms can be handled in an efficient way, independently from the kind of white noise; 2) The particular form of Wiener-Hopf integral transform and its numerical evaluation, both introduced in this study, are generalizations of fractional integro-differential operators of potential type and Gr\"unwald-Letnikov fractional derivatives, respectively.Comment: 20 pages, 5 figure

    Comment on "Why quantum mechanics cannot be formulated as a Markov process"

    Get PDF
    In the paper with the above title, D. T. Gillespie [Phys. Rev. A 49, 1607, (1994)] claims that the theory of Markov stochastic processes cannot provide an adequate mathematical framework for quantum mechanics. In conjunction with the specific quantum dynamics considered there, we give a general analysis of the associated dichotomic jump processes. If we assume that Gillespie's "measurement probabilities" \it are \rm the transition probabilities of a stochastic process, then the process must have an invariant (time independent) probability measure. Alternatively, if we demand the probability measure of the process to follow the quantally implemented (via the Born statistical postulate) evolution, then we arrive at the jump process which \it can \rm be interpreted as a Markov process if restricted to a suitable duration time. However, there is no corresponding Markov process consistent with the Z2Z_2 event space assumption, if we require its existence for all times tR+t\in R_+.Comment: Latex file, resubm. to Phys. Rev.

    The Hitting Times with Taboo for a Random Walk on an Integer Lattice

    Full text link
    For a symmetric, homogeneous and irreducible random walk on d-dimensional integer lattice Z^d, having zero mean and a finite variance of jumps, we study the passage times (with possible infinite values) determined by the starting point x, the hitting state y and the taboo state z. We find the probability that these passages times are finite and analyze the tails of their cumulative distribution functions. In particular, it turns out that for the random walk on Z^d, except for a simple (nearest neighbor) random walk on Z, the order of the tail decrease is specified by dimension d only. In contrast, for a simple random walk on Z, the asymptotic properties of hitting times with taboo essentially depend on the mutual location of the points x, y and z. These problems originated in our recent study of branching random walk on Z^d with a single source of branching

    Numerical Approach to Central Limit Theorem for Bifurcation Ratio of Random Binary Tree

    Full text link
    A central limit theorem for binary tree is numerically examined. Two types of central limit theorem for higher-order branches are formulated. A topological structure of a binary tree is expressed by a binary sequence, and the Horton-Strahler indices are calculated by using the sequence. By fitting the Gaussian distribution function to our numerical data, the values of variances are determined and written in simple forms

    Sign changes as a universal concept in first-passage-time calculations

    Get PDF
    First-passage-time problems are ubiquitous across many fields of study including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of non-differentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalises the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths thus alleviating common hurdles in first-passage-time calculations

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-
    corecore