991 research outputs found

    Magnetic Diagnostics of Magnetic Island in LHD

    Get PDF
    Characteristics of magnetic islands are investigated by magnetic diagnostics in the Large Helical Device (LHD). The structure of the magnetic island with m/n = 1/1 (where, m and n are poloidal and toroidal mode number, respectively) can be estimated from the perturbed magnetic field appearing when a magnetic island changes. To measure the toroidal profile of the perturbed magnetic field δb1 originating from the plasma, a toroidal array of magnetic flux loops is set up in the LHD. The toroidal profile of δb1 is then spatially Fourier decomposed to determine the amplitude of the n = 1 component, δb1n=1 and its phase, φn=1 which correspond the change of the island width and the toroidal position of the X-point of the island, respectively. Therefore, the information about the magnetic island structure can be obtained from δb1n=1 and φn=1. In case the island width becomes larger than the seed island, measurements show that δb1n=1 is non-zero and φn=1 is temporally constant. A non-zero δb1n=1 can also be observed when the island width becomes smaller than the seed island. In this case, the angle φn=1 shifts by about π[rad] compared with the increasing case and the δb1n=1 is limited to a certain value which corresponding to the magnetic field suppressing the seed island

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Extension and its characteristics of ECRH plasma in the LHD

    Full text link
    One of the main objectives of the LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of the LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with the special emphasis on the local heating properties. As the result, central electron temperature of more than 10 keV with the electron density of 0.6 x 1019^{19} m−3^{-3} is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. 168 GHz ECRH system demonstrated efficient heating at over the density more than 1.0 x 1020^{20} m−3^{-3}. CW ECRH system is successfully operated to sustain 756 s discharge.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    High Density High Performance Plasma with Internal Diffusion Barrier in Large Helical Device

    Get PDF
    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1 x 10^21m^-3. Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0) = 5.5% at Bt = 2.57 T
    • …
    corecore