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 Four resonance transitions of CIII (977.03Å: 2s2 1S0-2s2p 1P1), CIV (1550Å: 2s 
2S-2p 2P), CV (40.27Å: 1s2 1S0-1s2p 1P1) and CVI (33.73Å: 1s 2S-2p 2P) have been 

observed in VUV and EUV regions to study the edge carbon impurity transport in the 

LHD ergodic layer.  Here, CIII and CIV indicate the carbon influx at the outside 

boundary of the ergodic layer and CV and CVI indicate the ions in higher ionization 

stages which have already experienced the transport in the ergodic layer.  The intensity 

ratio of CV+CVI to CIII+CIV, therefore, represents the degree of impurity screening, 

which has been analyzed with different edge plasma parameters and ergodic magnetic 

field structures.  The ratio decreases by two orders of magnitude with an increase of 

electron density, ne, in the range of 181019m-3.  The CV and CVI emissions tend to 

decrease with ne, whereas the CIII and CIV emissions monotonically increase with ne.  
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The result suggests an enhancement of the impurity screening in the higher ne range due 

to the increasing ion-impurity collision frequency (Zi1/s=3.4×104s-1 at ne=21019m-3 

and 1.0×105s-1 at 61019m-3 for CV).  The friction force parallel to the magnetic fields 

plays an important role in the edge impurity transport within the ergodic layer.  When the 

ergodic layer structure is thicker, the ratio systematically decreases mainly due to a 

reduction of CV+CVI emissions.  The ratio is also studied by changing the radial position 

of an externally supplied m/n=1/1 islands.  When the island is positioned in the ergodic 

layer, the ratio indicates a remarkable change, i.e. reduction of CV+CVI and increase of 

CIII+CIV.  These experiments demonstrate that the modification of the ergodic magnetic 

field structure makes a clear change to the edge impurity transport.  When the 

background ion species is changed from hydrogen to helium, the ratio is clearly reduced, 

at least at ne4×1019m-3, suggesting the enhancement of the impurity screening effect due 

to the increased collisionality.  Finally, the experimental result is simulated using 3-

dimenstional edge transport code of EMC3-EIRENE.  The density dependence of the 

carbon ratio can be well reproduced with a simulation code suggesting that impurity 

screening is induced in the ergodic magnetic field layer. 
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I. INTRODUCTION 

 

Edge particle control, including the control of impurities, is one of the important 

issues in fusion research with relation to confinement improvement and divertor heat flux 

control.  The impurity control becomes also important with respect to an enhancement of 

the bremsstrahlung emission in high-density operation, the dilution of fuel ions, and the 

energy loss by radiation.  Active impurity control was done using an axis-symmetric 

poloidal divertor configuration1, where the particle outflux is directed into a region 

separated from the main plasma.  Another approach of the active impurity control was the 

stochastization of edge magnetic fields using resonant perturbations2.  Such perturbations 

could ergodise the magnetic field lines by overlapping edge magnetic islands.  It is 

reported that the enhancement of edge particle and energy transport by the stochastic 

magnetic fields should lead to a reduction of impurity content in the core plasma3.   

In tokamak devices, the effect of such a stochastic magnetic field structure has 

been generally studied using external magnetic field coils, e.g., perturbation field on DIII-

D4, the ergodic divertor (ED) on Tore Supra5 and the dynamic ergodic divertor (DED) on 

TEXTOR6.  In DIII-D, the effect of stochastization has been mainly studied to control the 

ELM (edge localized mode) enhanced divertor heat flux in the pedestal7.  On the other 

hand, extensive studies on the impurity behavior due to ergodization of the edge magnetic 

fields have been carried out on Tore Supra.  In Tore Supra the activation of the ED led to 

a significant reduction in the concentration of intrinsic impurities and to an appreciable 

enhancement of the radiation from the plasma edge8.  The ED worked differently on each 

ionization state of highly charged impurity ions9.  In TEXTOR, the decontamination of 

highly ionized carbon in the plasma core was observed during DED operation10.  These 

experimental results clearly demonstrate the importance of the impurity transport in the 

stochastic magnetic field layer, where collisions with background particles are 

dominant11. 

In helical devices, such as the Large Helical Device12 (LHD), the edge magnetic 

fields are intrinsically stochastic. The edge plasma is therefore characterized by the 

presence of a thick stochastic magnetic field layer surrounding the plasma core, so called 

'ergodic layer'13.  The properties of the ergodic layer can be changed by shifting the 
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magnetic axis, by varying vertical magnetic field or by deforming the plasma shape, 

using the quadrupole magnetic field.  It is interesting to study the edge impurity behavior 

in LHD, which is determined by a static ergodic layer formed only by the steady 

superconducting magnetic coils and which is therefore entirely different from tokamaks14.  

The edge particle and impurity studies started at the beginning of LHD, when 

LHD was still a limiter experiment15, and have since progressed with the development of 

several diagnostic tools and computer simulation codes.  In this paper, the edge impurity 

transport has been studied using the spectral emissions from carbon, which is the primary 

impurity in LHD as well as other fusion devices.  The relevant properties of the edge 

magnetic field structure in LHD are described in Section II.  In Section III the 

experimental setup used for the present study is introduced.  After a brief description of 

theoretical background on the edge impurity transport of the ergodic layer in Section IV, 

the experimental results on the carbon emissions behavior are presented with the 

discussion in Section V.  In Section VI, finally, theoretical predictions from the EMC3-

EIRENE simulation code are compared with the experimental results. 

 

II. LHD EDGE MAGNETIC STRUCTURE 

 

 LHD is a superconducting device with major and average minor radii of R=3.60 

and a=0.64m, respectively.  The magnetic field for the confinement is produced and 

sustained by a pair of continuous helical coils, pairs of outer and inner vertical coils, and 

inner shaping coils.  Toroidal and poloidal pitch numbers of the helical coils are 

M/ℓ=10/2, respectively.  Ten pairs of local island divetor16 (LID), normal conducting, 

coils are set at the top and bottom ports of all vertically elongated plasma cross sections.    

These LID coils are basically used for the cancellation or expansion of m/n=1/1 island.  

The plasma axis position, which causes remarkable changes in the structures of both the 

magnetic surface and the ergodic layer, can be moved horizontally by changing the 

vertical field by means of the outer and inner vertical coils.  Schematic views of the LHD 

magnetic configurations at horizontally elongated cross sections of Rax = 3.60 and 4.00m 

are shown in Figs.1 (a) and (b), respectively.  The elliptical magnetic flux surfaces appear 

inside the last closed flux surface (LCFS).  The position of LCFS in LHD is defined by 
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the outermost flux surface on which the deviation of the magnetic field line is less than 

4mm after it has made 100 turns along the torus.  The magnetic field in the ergodic layer 

has been computationally determined by following the field lines which started from 

several radial points at a fixed toroidal position.  The calculation was terminated, when a 

field line had made 2000 toroidal turns or it had reached the divertor plates.  When a field 

line has made 2000 toroidal turns, it has, by definition, reached the last closed flux 

surface.  When the edge density profile is compared with the connection length, it reveals 

that an enough density can be formed in a region where the connection length is at least 

longer than 100m.  The edge density profile in the ergodic layer measured by 

reciprocating probe agrees well with such detailed predictions of the magnetic field 

structure17. 

The LCFS is surrounded by the ergodic layer.  The ergodic layer is naturally 

formed by overlapping magnetic islands with many modes depending on the radial 

magnetic field, which is generated by the helical coils.  The volume of the ergodic layer 

is much larger in the case with Rax=4.00m than in the case with Rax=3.60m as indicated in 

Fig.1.  The thickness of the ergodic layer varies with the poloidal angle.  The thickness 

reaches its minimum value of 1-2cm at the O-points located near the helical coils for the 

case with Rax=3.60m.  The ergodic layer typically consists of stochastic magnetic field 

lines with lengths from 10 to 2000m, which correspond to 0.5-100 toroidal turns around 

the torus.  The thickness of the ergodic layer, erg, increases with the outward shift of the 

magnetic axis.  It can be seen that the erg at inboard side becomes very large for 

outwardly shifted plasma configurations.  Ergodicity is defined by the inverse of the 

Kolmogorov length, Lk
-1.  In LHD, the Lk

-1 basically increases when the location moves 

outboard along the major radius.  When the ergodic layer becomes thicker, the Lk
-1 

becomes larger at the periphery of the ergodic layer, so that the ergodicity in a thick 

ergodic layer is always large18.  Outside of the ergodic layer, there exist four intrinsic 

divertor legs between the X-points and divertor plates.  The particle flux out of the 

plasma core reaches the divertor plates through the ergodic layer via the divertor legs. 

 Edge profiles of the magnetic field connection length, Lc, are illustrated in Figs.2 

(a) and (b) at the horizontally elongated plasma cross sections for Rax=3.60 and 4.00m, 

respectively.  The LCFS position is shown by a solid vertical line and typical range of the 
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ergodic layer is indicated by a thick horizontal bar.  As one can see, the ergodic layer 

consists of field lines with short and long connection lengths.  The long field lines work 

as the main channel of the particle and heat outfluxes.  The number of field lines with a 

short connection length of Lc100m increases towards the periphery of the ergodic layer, 

which is known as the edge surface layer.  Long connection lengths also appear in the 

edge surface layer within a narrow, discrete region and coexist together with short 

connection lengths.  This structure is a unique feature of the LHD intrinsic divertor 

configuration.  The short field lines provide particle and energy sinks for the long field 

lines via perpendicular transport.  

 

III. EXPERIMENTAL SETUP 

  

An LHD discharge is generally initiated by electron cyclotron heating (ECH) and 

then sustained and heated by the injection of three negative-ion-based neutral beams 

(NBI).  The maximum total heating power of the NBIs is 18MW.  The electron density 

and electron temperature in LHD discharges with gas puff are typically ne1020m-3 and 

Te3keV.  Operation at higher densities up to 1021m-3 is possible using H2 pellet injection.  

Carbon emissions have been monitored using resonance transitions of CIII (977Å, 2s2 1S-

2s2p 1P), CIV (1548Å, 2s 2S-2p 2P), CV (40.27Å, 1s2 1S-1s2p 1P) and CVI (33.73Å, 1s 
2S-2p 2P).  The CIII and CIV lines, in VUV range, are observed using two absolutely 

calibrated 20cm normal incidence vacuum ultraviolet (VUV) monochromators equipped 

with secondary electron multiplier (SEM) tube detectors19.  The signal is usually acquired 

within a time interval of 100s.  An absolute intensity calibration is obtained by 

measuring the intensity ratio of 3p-2s transition and the 2p-2s transition and applying the 

branching ratio method where the carbon emissions are measured by an absolutely 

calibrated flat-field extreme ultraviolet (EUV) spectrometer (EUV_Long: 50500Å 

range)20.  The spectral lines from CV and CVI are observed using another absolutely 

calibrated flat-field EUV spectrometer21 (EUV_Short: 10130Å range) with a spectral 

resolution of ~0.10Å at 40Å.  Back-illuminated VUV sensitive charge-coupled device 

(CCD) detectors are mounted on both spectrometers and operated in full-binning mode, 

where all the vertical pixel signals are summed up in a single bottom pixel and makes a 
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simple function as a linear detector.  The CCD detectors are cooled down to -20C using 

Peltier devices in usually used operational condition.  Data from the CCD are acquired in 

every 5ms with good signal-to-noise ratio.   

Vertical profiles of CIII (4650Å), CIV (5810Å) and CV (2271Å) emissions have 

been observed using a visible spectrometer for the Zeff profile measurement22.  The 

system consists of an astigmatism-corrected Czerny-Turner-type spectrometer with a 

CCD camera for visible light and a vertical array of 44 optical fibers.  The 30cm focal 

length spectrometer is equipped with a toroidal, a flat and two spherical mirrors and three 

gratings (110, 120, and 1200 grooves/mm) and covers the wavelength range of 

20009000Å.  The optical fiber (core diameter: 100μm) in combination with a lens (focal 

length: 30mm) provide a spatial resolution of 30mm at the plasma center.  Electron 

temperature and density profiles are measured with the Thomson scattering diagnostics.  

Line-integrated electron density is measured with the Far InfraRed (FIR) diagnostics.  

The ion saturation current measured by Langmuir probes, embedded in the divertor plates, 

is used in the present study as a density monitor at the divertor. 

 

IV. BRIEF DESCRIPTION ON IMPURITY TRANSPORT IN ERGODIC LAYER 

 

  Analysis of impurity transport in the ergodic magnetic field layer of LHD, with a 

troidally non uniform magnetic structure should be done with a three-dimensional 

treatment of the magnetic field lines, as mentioned in section VI.  For a better 

understanding of the physical background on the edge impurity transport we describe 

here the usually used formulation of a simple 1D model for the transport parallel and 

perpendicular to the field lines.   

 In the fluid description, the impurity transport along the field lines is governed by 

the momentum equation; 
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where the subscript of z and i denote the impurity ion with a charge state Z and the 

background ion, respectively.  The parameter of s is the coordinate along the field line.  

The symbols of zi, E׀׀ and V׀׀ denote the impurity-ion collision time, the parallel electric 
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field and the parallel flow velocity, respectively.  It is assumed that the ion temperature of 

impurity, Tz, is equal to the ion temperature of the background ion, Ti.  The first term on 

the right hand side is the force due to the impurity pressure gradient (FPG).  The second 

and third terms are the force due to friction (FF) between impurity and background ions 

and the force due to parallel electric field (FE), respectively.  The FF drives the impurity 

ion towards the divertor (downstream) and the FE pushes the impurity ions along the 

electric field.  The fourth and fifth terms on the right hand side are the forces due to 

electron (FeG) and ion (FiG) temperature gradients, respectively.  Both of them drive the 

impurity ions towards the high temperature region (upstream).  Among these terms, the 

FF and FiG terms are dominant for our usual plasma parameters23.  For the typical edge 

plasma parameters in LHD of Te=100eV, Ti=150eV, ni=1019m-3, and Lc=50m for He-like 

CV (C+4) ions, the values of the force terms mentioned above, are  
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where CV,i ~1.1610-4s.  The relations of FFFE and FiGFeG are valid under these 

conditions.  The FPG term becomes very weak, since the parallel density gradient is 

relatively small.  The force balance between FF and FIG, i.e., friction force and thermal 

force, thus defines the direction of the impurity flow.  The impurity velocity along field 

lines is expressed by 
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The flow, characterized by Vi׀׀, is downstream and the flow, driven by the gradient of 

sTi  , is upstream.  The impurity flow is downstream, when the thermal force is 

dominated by the friction force.  The ratio between these two forces24 can be written as 
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where M is the Mach number and i
0 the parallel heat transport coefficient. The 

numerator and denominator represent convective and conductive energy fluxes, 

respectively.   

  The radial transport in the ergodic layer is described by the 1D radial continuity 

equation for the impurity flux24 
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since the source term can be neglected because of the short ionization mean free path of 

neutral impurity.  Here, the symbol of r defines the radial direction in the plasma, and nI 

is the impurity density summed over all charge states.  The value of DI expresses the 

cross field diffusion coefficient for the impurities.  The symbol  denotes the field line 

pitch inside the remnant islands in the ergodic layer, which is defined as dr/dl with dl 

being the parallel path along island separatrix for a radial displacement of dr.  The 

equation can be integrated and replaced by25 
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where a is the position of the outermost boundary of the ergodic layer.  The equation 

indicates that the impurity is screened in the ergodic layer, if the velocity of the outward 

impurity flow, Vz||0.  In the following discussion it is assumed that the perpendicular 

transport coefficients do not change much even if the edge parameters such as the density 

and magnetic field line structure change considerably. 

   

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

The fractional abundance of the carbon ions at the plasma center is calculated 

using the 1-d transport code26 assuming a diffusion coefficient of D=0.1m2/s, which is 

used to study the core transport properties of LHD plasmas27.  Figure 3 shows the 

fractional abundance of carbon ions.  Since the abundance of carbon ions, located at 

plasma edge, are also a function of the convection velocity, the radial position of each 

carbon ion should shift toward the region with higher temperature.  However, the figure 

is still useful for an understanding of the ionization balance of carbon.  The Be-like (CIII) 



 - 10 -

and Li-like (CIV) ions are located in a very low temperature region of Te<15eV.  The He-

like (CV) and H-like (CVI) ions, on the other hand, are located in a region, 15<Te<200eV, 

which is clearly separated from the region of CIII and CIV.  This is a very important fact 

in the present study.  Since the edge temperatures at the LCFS (=1) in LHD are usually 

in a range of 50Te500eV, except for the extremely high-density range, the CIII and 

CIV ions always exist on the outer side of the ergodic layer, whereas the CV and CVI 

ions exist near the LCFS (see typical edge Te profiles, e.g., Fig.7).   

The radial profiles of the impurities have been observed using a visible 

spectrometer for bremsstrahlung profile measurement.  Typical examples of the vertical 

profiles of the CIII, CIV and CV emissions measured at Rax=3.6m are shown in Fig.4.  

The magnetic field configuration for the case of Rax=3.6m is traced in Fig.5 for a poloidal 

cross section along the viewing angle of the visible spectrometer.  Here, we point out that 

a few viewing chords at the bottom side, near Z= -0.4m, are blocked by the rid of the 

vacuum vessel.  The CIII and CIV profiles in Fig.4 indicate a remarkable non uniformity 

reflecting the field line structure of the ergodic layer.  The peaks of the CIII and CIV 

profiles seen in the same vertical location of Z=0.46m indicate that the edge emission is 

usually observed from upper side ('+' means upper side and '-' means lower side in Fig.5) 

of the LHD elliptical plasma at the horizontally elongated plasma cross section.  The 

edge emission can be enhanced by the long chord length along the plasma edge at the top 

side, as seen in Fig.5.  Whereas both peaks at Z=0.37m for CIII and at Z=0.09m for CIV 

originate from emissions in the ergodic layer near the inboard side X-point.  The field 

lines near the inboard side X-point are directly connecting to divertor plates.  Since the 

field line structure is complicated due to its chaotic nature, which results in a specific 

particle behavior in the three-dimensional space, the transport has not been fully 

understood at present.  However, it can be argued that the electron temperature and 

density are not uniform along the poloidal angle in the ergodic layer and that the location 

of impurity ions in each ionization stage can be determined by the non uniform 

temperature and density structures, so that the CIV peak is not observed at the same 

position as CIII.  Such an inhomogeneous poloidal distribution was, for instance, also 

observed in neutral hydrogen and helium emissions by a 2-dimensional profile 

measurement, using Zeeman spectroscopy28.  These inhomogeneous poloidal distributions 
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mainly arise from inhomogeneities in the neutral particle density29.  This is the reason why 

such non uniform profiles are seen in the CIII and CIV.  However, the CV profile does not 

express any strong asymmetric character, which strongly suggests that the CV ion 

distribution is only a function of the magnetic surface.  The CV intensity gradually 

increases when the line-of-sight is moved from the bottom to the top of the elliptical 

plasma.  This continuous change in intensity originates mainly from the different chord 

integration lengths in the edge plasma. 

Spectral emissions from CIII, CIV, CV and CVI have been analyzed during the 

steady state phase of several NBI discharges in LHD.  Since the ionization energies of 

CIII (48eV) and CIV (64eV) are very small compare to the CV (392eV) and CVI 

(490eV), there exists a clear separation of the carbon ions in these different four 

ionization stages in the radial direction, as mentioned before.  The four charge states of 

carbon ions can thus be divided into two groups, i.e., CIII+CIV and CV+CVI.  The CIII 

and CIV, existing at outer side in the ergodic layer, can be taken as the source term 

representing the influx of carbon, while the CV and CVI existing near the LCFS can be 

taken as the ions, which have already experienced the transport through the ergodic layer.  

The intensity ratio of the two groups can, therefore, be considered as a measure for the 

degree of the impurity screening.  This ratio was analyzed to study the edge impurity 

transport for different edge plasma parameters and ergodic magnetic field structures. 

 

A. DENSITY DEPENDENCE OF CARBON EMISSIONS 

 

The ratio of CV+CVI to CIII+CIV as a function of line-averaged electron density, 

ne, is plotted in Fig.6 (a).  The ratios drop by two orders in magnitude when the density 

rises from 1 to 81019m-3.  This drop is mainly due to the fact that the CIII+CIV intensity 

monotonically increases with ne whereas the CV+CVI intensity tends to decrease with 

increasing ne.  This is also seen in the Fig.6 (b), where the CV+CVI and CIII+CIV 

intensities normalized to the density are plotted versus <ne>.  The edge ne and Te profiles 

are plotted in Fig.7 as a function of major radius for low-density (closed circles: 

<ne>=1.5×1019m-3) and high-density (open triangles: 5.51019m-3) discharges.  It is 

clearly seen that the edge Te is lower at higher edge ne.   During the steady state phase of 
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LHD discharges, the CIII and CIV intensities, normalized to the density, reflect the influx 

of carbon, since the excitation rate coefficients become proportional to the ionization rate 

coefficients.  The edge Te profile generally does not change much in LHD, when the 

density changes, so that, the emission volume of CV and CVI also does not change, even 

though the radial location changes according to the change of edge Te.  A small jump is 

seen in the edge ne profiles at R=4.6m.  This edge density jump is observed by the 

Thomson scattering diagnostics in most discharges.  The reason is presently unclear.  As 

indicated in Fig.6 (a), the drop of the intensity ratio suggests the impurity screening in the 

range of higher ne.  The ion-impurity collision frequency, zi, for He-like CV ion is given 

by23 
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Assuming Ti=100eV, the frequencies become 3.42104 and 1.02105s-1 at densities of 

ni=21019 and 61019m-3, respectively.  The increase of the collision frequency means 

that the contribution of the friction force is enhanced at higher densities.  The friction 

force overcomes the thermal force in the range of higher ne, as suggested in Eq.3 and 

leads to the enhancement of impurity screening.  This conclusion is also supported by 

edge particle transport EMC3-EIRENE code simulations, which are discussed in section 

VI. 

 

B. CARBON EMISSIONS WITH DIFFERENT MAGNETIC AXES 

 

 When the magnetic axis is shifted, the thickness of the ergodic layer changes 

remarkably.  Figure 8 (a) illustrates the ratio of the CV+CVI to CIII+CIV emission as a 

function of ne.  The ratios decrease with increasing <ne> for all magnetic axis 

configurations.  In addition, the ratios become lower when Rax is shifted outwardly.  This 

tendency is very clear especially for densities of 51019m-3.  This reduction is mainly 

caused by the decrease in the CV+CVI intensity as shown in Fig.8 (b).  On the contrary, 

the CIII+CIV intensities do not change with <ne> for all configurations, as revealed in 

Fig.8 (c), although the edge Te and ne are considerably changed by a shift of Rax.  This 

indicates that the carbon source term is nearly similar for all magnetic axes, except for 
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Rax=3.60m, where the source term is somewhat different at the low densities.  The 

reduction of the CV+CVI, therefore, suggests an enhancement of the impurity screening 

for increasing values of Rax.  The small increase in the ratios and intensities of CV+CVI 

at ne above 6×1019m-3 for Rax = 4.0m seem to originate from low energy confinement and 

a low NBI power deposition in the Rax=4.0m configuration.  In other words, shifting Rax 

outside from Rax=3.6m, the energy confinement becomes worse due to a decrease of the 

plasma volume, and the NBI power deposition becomes also worse due to the increased 

effective magnetic ripple and deviation of NBI beam center from the plasma axis.  

Therefore, the size of the plasma varies as the density is increased, especially in the case 

of Rax=4.0m, due to the large reduction of the edge temperature.  The thickness of the 

ergodic layer also changes as a function of density.  The slight increase in the ratio of the 

CV+CVI to CIII+CIV and the intensity of CV+CVI may reflect such a dynamic change 

of the ergodic layer thickness in the high-density range.  The structures of the ergodic 

layer are shown in Fig.9 for Rax=3.6-4.0m.  The thickness of the ergodic layer increases 

with an outward shift of the magnetic axis.  The size of the ergodic layer plays an 

important role for the edge particle transport.  An exact determination of the size of the 

ergodic layer is difficult at present because the magnetic field lines continuously expand 

into the outer area with a limited connection length.  However, it is known from the 

experiments that the edge density is determined by field lines with a connection length of 

Lc>10m, so that, the area of the ergodic layer can practically be derived from these 

experimental results, as indicated by the horizontal bar in Fig.9.  The thickness of the 

ergodic layer is plotted in Fig.10 as a function of Rax.  The thinnest ergodic layer is 

obtained for the Rax=3.6m configuration, so called 'standard configuration', where LHD 

plasmas have the maximum volume of 30m3.  The thickness of the ergodic layer in cases 

with Rax=4.0 and 4.1m is 3-5 times larger than in the case with Rax=3.6m, resulting in a 

smaller plasma volume.  

 Figure 11 shows the edge profiles of ne and Te for Rax=3.6 and 4.0m.  The edge 

density tends to have a flatter profile with increasing Rax for the same line-averaged 

electron density.  This tendency is clearly seen in Fig.11 (a).  The thicker ergodic layer 

for Rax=4.0m supports a flatter density profile with a high density compared to Rax=3.6m 

case.  The edge Te profiles in the ergodic layer are almost similar in both cases, as shown 
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in Fig.11 (b), while the core Te profiles inside the LCFS are quite different.  The edge 

density in the ergodic layer normalized to the core density, increases with increasing 

ergodic layer thickness.  As a result, the friction force dominates over the ion thermal 

force in the thick ergodic layer, so that the degree of the impurity screening becomes a 

function of the size of the ergodic layer.  Finally, it should be mentioned that in the 

Rax=4.0m configuration the plasma performance is worse, even though impurity ions can 

be well screened. 

 

C. CARBON EMISSIONS WITH EXTERNALLY SUPPLIED m/n=1/1 

MAGNETIC ISLAND 

 

 In LHD, the m/n=1/1 magnetic island can be superimposed in the edge region by 

means of the LID coils, where m and n are the poloidal and toroidal mode numbers, 

respectively.  The position of the island varies with the magnetic axis, since the rotational 

transform changes appreciably with Rax.  Figure 12 shows the profiles of the rotational 

transform as a function of normalized radius .  The rotational transform profiles become 

gradually flatter with increasing Rax.  As a result, the radial location of the /2=1 surface 

moves to the outside region of the plasma when the Rax is shifted outwardly.  The 

position of /2=1 is located at =0.83 for the Rax=3.60m configuration, whereas it is 

inside the ergodic layer for the Rax=4.00m configuration.  Therefore, the m/n=1/1 island 

can be placed just inside the LCFS for Rax=3.75m and just outside the LCFS (inside the 

ergodic layer) for Rax=3.85m.  In both cases, current was supplied to the LID coils to 

expand the m/n=1/1 island.  The edge magnetic field structures are calculated and 

Poincare plots are shown in Fig.13 for horizontally elongated plasma cross section.  

Vertical solid lines indicate the LCFS position.  The size of intrinsic m/n=1/1 island is 

basically small (see Fig.13 (a)).  When current is supplied to the LID coils, the formation 

of a large island is clearly visible at outboard side of the elliptical plasma.  By contrast, 

the formation of an island is not visible in Fig.13 (d), essentially because of the absence 

of a resonant field in the ergodic layer.  However, depending on the current supply to the 

LID coils, a certain effect can be seen in the figure, which suggests that the edge impurity 

transport can be modified by changing the position of the m/n=1/1 island. 
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 The line emissions from carbon were observed in both cases, i.e. during the 

absence and presence of the superimposed m/n=1/1 island, for Rax=3.75 and 3.85m as 

mentioned above.  The ratios of CV+CVI and CIII+CIV are plotted together with their 

normalized intensities as a function of ne in Fig.14.  In the Rax=3.75m configuration, 

the ratios do not entirely change in the cases with and without an m/n=1/1 island.  

However, the ratios measured in Rax=3.85m configuration decrease drastically when the 

island is produced in the ergodic layer, as seen in Fig.14 (d).  This reduction of the ratios 

originates from a simultaneous decrease of CV+CVI and an increase of CIII+CIV (see 

Figs.14 (e) and (f)).  

Edge ne and Te profiles are shown in Fig.15 for Rax=3.75 and 3.85m.  When the 

LID coils are turned on in the Rax=3.75m configuration, the Te profile in the ergodic layer 

does not change, whereas the Te profile inside the LCFS changes significantly with this 

appearance of a flat Te profile due to an m/n=1/1 island formation (see Fig.15 (b)).  In the 

case of Rax=3.85m, the flat Te profile expands inside the ergodic layer, as shown in 

Fig.15 (d).  The density in the ergodic layer increases a little when the island is produced 

(see Fig.15 (c)).  Note that the discharges, here produced, had the same line-averaged 

electron density in both cases with Rax=3.85m.  However, a higher gas puffing rate is 

required when the island is formed.  This may be the reason why the ergodic layer 

density is somewhat high.  The reason for the decrease in the density just inside the LCFS 

with LID for Rax=3.85m is not yet fully understood.  The O-point in m/n=1/1 island, 

formed by LID field, is produced at the outboard side of the #7-O port.  The Te and ne 

values from the Thomson scattering diagnostic are measured at port #4-O away from port 

#7-O by a toroidal angle of 1080.  Therefore, the Thomson diagnostic measures the O-

point of the m/n=1/1 island at both the inboard and the outboard side.  Here, it should be 

noted that the LID field can create a magnetic resonance inside the LCFS, but can 

basically not produce any resonance in the ergodic layer.  Figure 15 (d) shows that the 

island can be created at the inner side of the ergodic layer (R=4.6-4.7m) by activating the 

LID coils.  On the other hand, there exists also a natural island in LHD, probably due to 

the error field.  For the Rax=3.85m configuration, the position of /2=1 is located at 

R=4.57m.  The m/n=1/1 natural island has the same toroidal phase as the island produced 

with the LID coils.  Of course, the size of the natural island is considerably smaller than 
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the LID island.  From Fig.15 (d), without activated LID coils, we cannot see any effect of 

the island in the Te profile.  Therefore, we believe that the ne decrease in Fig.15 (c) is 

caused by the island formation with the LID coils.  Finally, we note that we have not yet 

a clear explanation for why the ne increase at R=4.5m appeared in the case without LID, 

shown in Fig.15 (c).  We also have to examine the edge density profiles with respect to 

magnetic surface/field deformations due to plasma pressure, temperature effects and the 

3-dimensional structure of ne.  The size of the island in the Rax=3.75 and 3.85m 

configurations is ~17 and ~22cm with Te ~250 and ~90eV, respectively.  From this island 

experiment one can learn that a modification of the magnetic field lines in the ergodic 

layer clearly changes the edge impurity transport.  To fully understand the parallel and 

perpendicular transports in the ergodic layer, a more detailed edge transport simulation 

will be necessary. 

 

 D. CARBON EMISSIONS WITH H2 AND He DISCHARGES 

 

 The carbon impurity behavior was also studied by changing the background ion 

species.  For this purpose, He instead of H2 discharges were produced with the magnetic 

axis at 3.85m.  The ratios of CV+CVI to CIII+CIV are plotted vs ne in Fig.16.  As 

shown in Fig.16 (a), the ratios are appreciably reduced in the He discharges, only for 

densities of 51019m-3.  This reduction is mainly due to a decrease of CV+CVI 

intensities, as seen in Fig.16 (b).  The CIII+CIV intensities become nearly the same in 

both cases for densities of 51019m-3, except for a sudden rise in the densities for 

51019m-3 (see Fig.16 (c)).   

 Waveforms of the line-averaged density are shown in Fig.17 together with the 

carbon emissions.  The global parameters are nearly the same, except for the edge 

parameters and the carbon emissions.  The edge Te is plotted for =1 as a function of 

ne in Fig.18 (a).  No important difference is seen in the figure for the H2 and He 

discharges, while the edge Te in He discharges are somewhat higher.  A clear difference 

is, however, seen in the ion flux measured by Langmuir probe embedded in divertor 

plates, as shown in Fig.18 (b).  If the density in H2 discharges rises above ne=5×1019m-3, 

the ion flux suddenly increases, accompanied by an entirely similar behavior of the 
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CIII+CIV emission, as shown in Fig.16 (c).  In H2 high-density discharges we see 

relatively strong emissions from hydrocarbon molecules.  We believe that the increase in 

the carbon emissions in the high-density range is related to the formation of hydrocarbon 

molecules.  

The reduction of the ratio of CV+CVI to CIII+CIV in He discharges seems to be 

related to a change in the force balance parallel to magnetic fields.  Assuming Ti=100eV 

and ni=1019m-3, the ion-impurity collision frequencies for He-like CV ions are 1.58104 

and 3.88104s-1 with H2 and He background ions, respectively.  This leads to an 

increased friction force.  Furthermore, in He plasmas, the constant part of 2.6Z2 for the 

ion thermal force term, given by Eq.1, has to be replaced by 1.6Z2.  This leads to a 

reduced contribution from the ion thermal force23.  The increased friction force and 

reduced ion thermal force in He plasmas can enhance the impurity screening effect in the 

ergodic layer.  In helical devices, the outside plasma boundary can freely change because 

the magnetic field for the confinement is given externally.  This effect is further enhanced 

in cases with a thick ergodic layer.  The real outside boundary is determined by the 

thermal balance between the heat input and edge energy losses, such as convective and 

conductive losses, charge exchange loss, and radiative losses.  Especially, the boundary 

changes in high-density discharges.  The edge boundary condition can then easily change 

from attached to detached plasmas.  On the other hand, it is already understood that the 

fueling efficiency is not good in plasmas with a thick ergodic layer, as shown in Fig.8.  

Larger gas puffs are necessary to maintain the discharge because of the worse fueling rate.  

Therefore, the outside plasma boundary can easily be reduced in the high-density range 

of such a magnetic configuration.  The discharges seen in Fig.16 represent the same case.  

When the plasma radius becomes small in higher density range and the plasma becomes 

detached, the magnetic field connection length becomes longer at the plasma edge.  The 

perpendicular transport is then more important than the parallel transport.  Therefore, we 

believe that the carbon screening is similar for H2 and He plasmas at high-density ranges. 

  

VI. COMPARISON WITH SIMULATED CARBON EMISSION USING AN EDGE 
TRANSPORT CODE 
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Impurity transport characteristics in the ergodic layer have been analyzed using 

the three dimensional edge transport code, EMC3-EIRENE.  The simulation code 

EMC330 solves the fluid equations of mass, momentum and energy in arbitrary magnetic 

field geometries, using Monte Carlo scheme.  The simulation code of EIRENE31 solves a 

kinetic transport model for neutrals, such as the recycling neutrals from divertor plates, 

and treats the interaction with bulk plasma.  The computational domain of the combined 

code starts from the LCFS upstream, and considers the entire ergodic layer as well as the 

realistic three dimensional nature of the magnetic field line structure32.   

 The profile of the connection length, Lc, in the ergodic layer of LHD, superposed 

with Poincare plot of field lines, is illustrated in Fig.19 showing two clearly separated 

regions, the 'stochastic region' and the 'edge surface region'.  The values of Lc in range of 

1-105m are plotted in the figure.  The magnetic islands are visible in the stochastic region.  

Moving further outwards, short and long field lines are mixed together.  This region, 

known as the edge surface layer, is characterized by strong magnetic shear, which 

stretches and bends the flux tubes and thus mixes the long and short flux tubes.  The 

density and energy fluxes at the LCFS obtained from the experiment are used as the 

boundary conditions for particle and energy transports for an input power of 8MW to 

SOL, while the Bohm condition is imposed at the divertor plates.  The perpendicular 

transport coefficients, D and , for particle and heat fluxes are taken to be 0.5 and 

1.5m2.s-1, respectively.  The perpendicular transport coefficient for impurities is 

considered to be the same as the background ions.  For the particle transport, considering 

a classical parallel convection and anomalous cross-field diffusion, the ratio of parallel to 

perpendicular transport times is given by25 

                              
||

|| 2
Vx

D





,                                                                              (7) 

where D is the cross-field diffusion coefficient, ∆x the radial thickness of the ergodic 

layer, V|| the parallel velocity of ions, and Θ the field line pitch inside the remnant islands 

in the ergodic layer.  For D=0.5m2.s-1, ∆x= several cm, Θ=10-4 and V||=1.3×105 m.s-1 (the 

sound speed in a hydrogen plasma with Te=Ti=100eV), the perpendicular and parallel 

transports become comparable in the ergodic layer of LHD, i.e. τ|| ~τ.  Then, the cross 
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field transport competes with the parallel transport in LHD.  In tokamaks, however, the 

parallel transport is more dominant than the perpendicular transport.   

The obtained impurity density profiles are averaged over the poloidal and toroidal 

directions in order to plot them as a function of the radial coordinate, reff, which is 

defined by a cylindrical approximation of the volume enclosed by each radial surface of 

the computational mesh.  Radial profiles of the total carbon density are plotted in Fig.20 

for different plasma densities.  Here, nc/nc_ob is the carbon density normalized to the total 

carbon density at the outermost boundary of ergodic layer.  At the low density of 

nLCFS=21019m-3 the carbon impurity is accumulated towards the LCFS because of the 

effective ion thermal force.  The impurity density in the stochastic layer decreases 

gradually with increasing densities and the impurity is driven towards the divertor plates 

due to an increase in the friction force with an increase of nLCFS density. 

In the present computational domain a simulation inside the LCFS is difficult.  

However, a substantial fraction of CVI is often located inside the LCFS.  Ratios of CV to 

CIII+CIV, instead of the ratio of CV+CVI to CIII+CIV, are compared with the simulated 

ones in Fig.21 (a).  Data from the case with the magnetic axis at 3.75m are considered 

here for comparison.  In the intensity calculation of the carbon emissions, the specific 

volume of observation is determined by each spectrometer, taking into account its 

observation angle and line-of-sight.   

The observed line radiations are plotted in Fig.21 (b) as a function of line-

averaged density.  The CIII and CIV emissions increase with ne, whereas the CV 

emission decreases with ne.  The results from the simulation are shown in Fig.21 (c).  The 

tendency of the predicted emissions is very similar to the experimental ones.  However, 

the absolute magnitudes of the line radiations of CV are clearly different, i.e., the 

experimental CV radiation is 4 times larger than the calculated one.  The reason has not 

yet been clearly identified.  The simulation code makes several assumptions with respect 

to the complexity of the magnetic field structure in the ergodic layer of LHD and does not 

access inside the LCFS.  Although the magnetic field structure in vacuum is used for the 

ergodic layer, the deformation due to the plasma pressure is entirely unknown at present.  

Furthermore, the anomalous pinch effect, which is believed to play an important role in 

the transport, is not included in the simulation.  Some improvements also seem to be 
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necessary for the absolute calibration of the spectrometers.  Therefore, the calculated 

intensity ratios have been normalized to the experimental ratios.  The results are shown in 

Fig.21 (a).  The data have been normalized to the electron density and CIII+CIV emission 

at ne=3.71019m-3.  The ne dependence of the ratios from the experiment and simulation 

agree qualitatively well.  The simulation was also done for the case of an absent friction 

force.  A clear difference is seen in the behavior of CV, as shown in Fig.21 (d).  The CV 

emission increases monotonically with ne as well as the CIII and CIV emissions when the 

friction force is not included in the simulation.  As a result, the ratio of CV to CIII+CIV 

does not decrease with ne as seen also in Fig.21 (a).  The role of the friction force 

becomes apparent by switching off the friction force term during the simulation.   

The carbon density profiles simulated for each charge state are plotted in Fig.22 

for two densities at the LCFS.   For the high density of nLCFS=4×1019m-3, the impurity ion 

densities of C+4 (CV) and C+5 (CVI) become smaller while the ones of C+2 (CIII) and C+3 

(CIV) increase compared with the low-density case.  The radial locations of the charge 

states are not basically changed for different densities.  When the density increases, the 

friction dominant region gradually extends to the inner radial space, which is originally 

dominated by the ion thermal force.  The locations of C+2 and C+3 are then further limited 

to the edge surface layer.  The negative gradient at reff 0.68m, seen in the total carbon 

density of Fig.22 (b), is a clear indication for the outward impurity flow and resultant 

impurity screening.  

 
 
VII. SUMMARY 

 

 Carbon emissions have been studied to understand the impurity behavior in the 

edge ergodic layer of LHD.  The study is carried out by taking the ratio of CV+CVI to 

CIII+CIV as a typical indicator of the impurity screening.  The results are discussed in 

relation to the impurity transport parallel to the magnetic field lines in the ergodic layer, 

which is mainly dominated by the ion thermal force and the friction force.   

The ratio of CV+CVI to CIII+CIV decreases by two orders of magnitude with 

increasing ne in the range of 18×1019m-3.  This result indicates an enhanced impurity 

screening in the ergodic layer at higher densities, suggesting the importance of the 
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friction force.  The ratio was also examined by changing the thickness of the ergodic 

layer.  The ratio decreases with ergodic layer thickness.  The effect of the impurity 

screening can be enhanced in thicker ergodic layers.  The carbon emissions were also 

observed by changing the radial position of externally supplied m/n=1/1 island.  The ratio 

clearly decreases when the island is located in the ergodic layer.  This result evidently 

indicates that a modification of the magnetic field structure in the ergodic layer has a 

significant influence on the impurity behavior, although the reason is somewhat unclear 

because of the uncertainty in the perpendicular transport.  The ratio of the carbon 

impurity emissions is considerably reduced when the H2 discharge is replaced by a He 

discharge, except for the high density range, where the ratio seems to increase in helium 

plasmas.  The reduction of the ratio may result from the enhanced friction force due to an 

increased collision rate with heavier background ions and due to a decreased ion thermal 

force. 

A simulation of the impurity transport in the ergodic layer using EMC3+EIRENE 

code was done for comparison with the experimental data.  The results from this 

comparison strongly suggest the importance of the friction force in higher density ranges 

for the appearance of the impurity screening.  The density dependence of the simulated 

ratio of CV to CIII+CIV is in a good agreement with the experimental result.  Further 

efforts are being made to simulate the impurity behavior in the ergodic layer with a large 

m/n=1/1 island.  The dependence of the impurity screening effect on the atomic number 

is the objective of future experimental and theoretical studies.  
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FIGURE CAPTIONS 

 

Fig.1. Schematic views of horizontally elongated plasma cross section in (a) Rax=3.6 and 

(b) 4.0m of LHD.  Major radius and vertical distance are indicated by R and Z, 

respectively.  The equatorial plane is at Z=0.  

 

Fig.2. Edge profiles of magnetic field connection length, Lc, at outboard side of 

horizontally elongated plasma cross section as a function of major radius, R, for (a) 

Rax=3.6 and (b) 4.0m.  Vertical solid lines indicate LCFS positions and horizontal thick 

bars denote range of ergodic layer. 

 

Fig.3. Fractional abundance of C+, C+2, C+3, C+4, C+5 and C+6 as a function of Te. 

 

Fig.4. Vertical profiles of (a) CIII (4647Å), (b) CIV (5810Å) and (c) CV (2271Å) at 

Rax=3.6m, measured by spectrometer for measurements of visible bremsstrahlung profile. 

 

Fig.5. Viewing chords of visible bremsstrahlung spectrometer (horizontal lines) and 

magnetic field structure of LHD for Rax=3.6m.  The symbol '#41' represents the number 

of optical fibers.  

 

Fig.6. (a) Ratio of CV+CVI to CIII+CIV and (b) normalized intensities of (CV+CVI)/ne 

(closed circles) and (CIII+CIV)/ne (open triangles) in unit of 1014 photons.cm-2.sr-1.s-1/ 

1019m-3 as a function of <ne> for Rax=3.6m.   

 

Fig.7. (a) Edge ne and (b) Te profiles as a function of major radius for low-density (closed 

circles: <ne>=1.50x1019m-3) and high-density (open triangles: 5.521019m-3) discharges 

for Rax=3.6m.   

 

Fig.8. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne in unit of 1014 photons.cm-2.sr-1.s-1/1019m-3 as a function of <ne> 
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for Rax=3.60 (closed circles), 3.75 (open diamonds), 3.90 (closed squares) and 4.00m 

(open triangles).   

 

Fig.9. Edge profiles of magnetic field connection length, Lc, plotted as a function of 

major radius, R, at inboard (a)-(d) and outboard (e)-(f) sides of horizontally elongated 

plasma cross section in Rax=3.60, 3.75, 3.90 and 4.00m, respectively. Vertical solid lines 

indicate LCFS positions and horizontal thick bars denoted with 'Erg' show the range of 

ergodic layer. 

 

 Fig.10. Ergodic layer thickness, erg, as function of magnetic axis, Rax, at inboard (closed 

circles) and outboard (open triangles) sides in horizontally elongated plasma cross section. 

 

Fig.11. (a) Edge ne and (b) Te profiles as a function of major radius for Rax=3.60 (closed 

circles) and 4.00m (open triangles).  Vertical lines indicate LCFS positions for Rax=3.60 

and 4.00m. 

 

Fig.12. Radial profiles of rotational transform, /2, for Rax=3.60 ( ), 3.75 (  ), 3.85 

(    ), 3.90 (  ) and 4.00m ( ). Value of  is the normalized radius. 

 

Fig.13. Magnetic field structures of edge ergodic layer for horizontally elongated plasma 

cross sections for (a) Rax=3.75m without LID, (b) Rax=3.75m with LID, (c) Rax=3.85m 

without LID and Rax=3.85m with ILD.  Large m/n=1/1 island is externally produced by 

ten sets of LID coils.  Vertical solid lines indicate LCFS positions. 

 

Fig.14. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne as a function of <ne> for Rax=3.75m and (d) ratio of CV+CVI to 

CIII+CIV emissions, normalized intensities of (e) (CV+CVI)/ne and (f) (CIII+CIV)/ne as 

a function of <ne> for R=3.85m without (closed circles) and with (open triangles) LID 

coils current.  (CV+CVI)/ne and (CIII+CIV)/ne are given in units of 1014 photons.cm-2.sr-

1.s-1/1019m-3. 
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Fig.15. Edge ne and Te profiles as a function of major radius with (open triangles) and 

without (closed circles) LID; (a) ne at Rax=3.75, (b) Te at Rax=3.75, (c) ne at Rax=3.85m 

and (d) Te at Rax=3.85m.  Solid vertical lines indicate LCFS positions. 

 

Fig.16. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne in unit of 1014 photons.cm-2.sr-1.s-1/1019m-3 as a function of <ne> for 

H2 (closed circles) and He (open triangles) discharges.  

 

Fig.17. (a) Line-averaged density, ne and normalized intensities of (b) CIII/ne, (c) 

CIV/ne, (d) CV/ne and (e) CVI/ne in H2 (solid lines) and He (dashed lines) discharges.  

Unit for carbon emissions of CIII (977Å), CIV (1548Å), CV (40.27Å) and CVI (33.73Å) 

is 1014 photons.cm-2.sr-1.s-1/1019m-3. 

 

Fig.18. (a) Te at =1 and (b) divertor ion saturation current, Isat, as a function of ne for 

H2 (closed circles) and He (open triangles) discharges.  

 

Fig.19 (Color online). Two-dimensional profile of connection length, Lc, in ergodic layer 

of LHD (Rax=3.75m) superposed with Poincare plot of magnetic field lines. 

 

Fig.20. Edge profiles of carbon density summed over all charge states for different 

densities: (a) nLCFS=21019m-3 (dotted line), 31019m-3 (dashed line) and 41019m-3 (solid 

line).  nc/nc_ob is carbon density normalized to the total carbon density at outermost 

boundary of ergodic layer.  Horizontal axis represents minor radius reff which is defined 

by cylindrical approximation.  Vertical dashed line indicates the boundary between 

stochastic region and edge surface layers as shown in Fig.19. 

 

Fig.21. (a) Ratios of CV to CIII+CIV from experiment (closed circles) and simulation 

with (open triangles+solid line) and without (open diamonds+dotted line) friction force as 

a function of <ne> and normalized line radiations of CIII/ne (closed circles), CIV/ne (open 

diamonds) and CV/ne (closed triangles) from (b) experiment and simulations (c) with and 
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(d) without friction force in unit of kW/1019m-3 as a function of ne.  Ratios from 

simulation are normalized to experimental value of 3.71019m-3. 

 

Fig.22. Radial carbon density profiles of each charge state simulated by EMC3-EIRENE 

code with (a) nLCFS=21019 and (b) 41019m-3.  Solid vertical arrows indicate position of 

LCFS for Rax=3.75m. 
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Fig.1. Schematic views of horizontally elongated cross section in (a) Rax=3.6 and (b) 

4.0m of LHD.  Major radius and vertical distance are indicated by R and Z, respectively.  

The equatorial plane is at Z=0.  
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Fig.2. Edge profiles of magnetic field connection length, Lc, at outboard side in 

horizontally elongated cross section as a function of major radius, R, for (a) Rax=3.6 and 

(b) 4.0m.  Vertical solid lines indicate the LCFS positions and horizontal thick bars show 

the ergodic layer region. 
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Fig.3. Fractional abundance of C+, C+2, C+3, C+4, C+5 and C+6 as a function of Te. 
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Fig.4. Vertical profiles of (a) CIII (4647Å), (b) CIV (5810Å) and (c) CV (2271Å) at 

Rax=3.6m measured by spectrometer for measurements of visible bremsstrahlung profile. 
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Fig.5. Viewing chords of visible bremsstrahlung spectrometer (horizontal lines) and 

magnetic field structure of LHD for Rax=3.6m.  The symbol '#41' represents the number 

of optical fibers. 
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Fig.6. (a) Ratio of CV+CVI to CIII+CIV and (b) normalized intensities of (CV+CVI)/ne 

(closed circles) and (CIII+CIV)/ne (open triangles) in unit of 1014 photons.cm-2.sr-1.s-

1/1019m-3 as a function of <ne> for Rax=3.6m.   
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Fig.7. (a) Edge ne and (b) Te profiles as a function of major radius for low-density (closed 

circles: <ne>=1.50x1019m-3) and high-density (open triangles: 5.521019m-3) discharges 

for Rax=3.6m.   
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Fig.8. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne in unit of 1014 photons.cm-2.sr-1.s-1/1019m-3 as a function of <ne> 

for Rax=3.60 (closed circles), 3.75 (open diamonds), 3.90 (closed squares) and 4.00m 

(open triangles). 
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Fig.9. Edge profiles of magnetic field connection length, Lc, plotted as a function of 

major radius, R, at inboard (a)-(d) and outboard (e)-(f) sides of horizontally elongated 

cross section in Rax=3.60, 3.75, 3.90 and 4.00m, respectively. Vertical solid lines indicate 

LCFS positions and horizontal thick bars denoted with 'Erg' show the range of ergodic 

layer. 
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Fig.10. Ergodic layer thickness, erg, as function of magnetic axis, Rax, at inboard (closed 

circles) and outboard (open triangles) sides in horizontally elongated plasma cross section. 
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Fig.11. (a) Edge ne and (b) Te profiles as a function of major radius for Rax=3.60 (closed 

circles) and 4.00m (open triangles).  Vertical lines indicate LCFS positions for Rax=3.60 

and 4.00m. 
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Fig.12. Radial profiles of rotational transform, /2, for Rax=3.60 ( ), 3.75 (  ), 3.85 

(    ), 3.90 (  ) and 4.00m ( ). Value of  is the normalized radius. 
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Fig.13. Magnetic field structures of edge ergodic layer for horizontally elongated cross 

sections for (a) Rax=3.75m without LID, (b) Rax=3.75m with LID, (c) Rax=3.85m without 

LID and Rax=3.85m with ILD.  Large m/n=1/1 island is externally produced by ten set of 

LID coils.  Vertical solid lines indicate LCFS positions. 
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Fig.14. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne as a function of <ne> for Rax=3.75m and (d) ratio of CV+CVI to 

CIII+CIV emissions, normalized intensities of (e) (CV+CVI)/ne and (f) (CIII+CIV)/ne as 

a function of <ne> for R=3.85m without (closed circles) and with (open triangles) LID 

coils current.  (CV+CVI)/ne and (CIII+CIV)/ne are given in units of 1014 photons.cm-2.sr-

1.s-1/1019m-3. 
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Fig.15. Edge ne and Te profiles as a function of major radius with (open triangles) and 

without (closed circles) LID; (a) ne at Rax=3.75, (b) Te at Rax=3.75, (c) ne at Rax=3.85m 

and (d) Te at Rax=3.85m.  Solid vertical lines indicate LCFS positions. 
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Fig.16. (a) Ratio of CV+CVI to CIII+CIV and normalized intensities of (b) (CV+CVI)/ne 

and (c) (CIII+CIV)/ne in unit of 1014 photons.cm-2.sr-1.s-1/1019m-3 as a function of <ne> for 

H2 (closed circles) and He (open triangles) discharges.  



 - 46 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17. (a) Line-averaged density, ne and normalized intensities of (b) CIII/ne, (c) 

CIV/ne, (d) CV/ne and (e) CVI/ne in H2 (solid lines) and He (dashed lines) discharges.  

Unit for carbon emissions of CIII (977Å), CIV (1548Å), CV (40.27Å) and CVI (33.73Å) 

is in 1014 photons.cm-2.sr-1.s-1/1019m-3. 
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Fig.18. (a) Te at =1 and (b) divertor ion saturation current, Isat, as a function of ne for 

H2 (closed circles) and He (open triangles) discharges.  
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Fig.19. Two-dimensional connection length, Lc, profile in ergodic layer of LHD 

(Rax=3.75m) superposed with Poincare plot of magnetic field lines. 
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Fig.20. Edge profiles of carbon density summed up over all charge states for different 

densities: (a) nLCFS=21019m-3 (dotted line), 31019m-3 (dashed line) and 41019m-3 (solid 

line).  nc/nc-ob is carbon density normalized to total carbon density at outermost boundary 

of ergodic layer.  Horizontal axis represents minor radius reff which is defined by 

cylindrical approximation.  Vertical dashed line indicates the boundary between 

stochastic region and edge surface layers as shown in Fig.19. 
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Fig.21. (a) Ratios of CV to CIII+CIV from experiment (closed circles) and simulation 

with (open triangles+solid line) and without (open diamonds+dotted line) friction force as 

a function of <ne> and normalized line radiations of CIII/ne (closed circles), CIV/ne (open 

diamonds) and CV/ne (closed triangles) from (b) experiment and simulations (c) with and 

(d) without friction force in unit of kW/1019m-3 as a function of ne.  Ratios from 

simulation are normalized to experimental value of 3.71019m-3. 
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Fig.22. Radial carbon density profiles of each charge state simulated by EMC3-EIRENE 

code with (a) nLCFS=21019 and (b) 41019m-3.  Solid vertical arrows indicate position of 

LCFS for Rax=3.75m. 


