1,578 research outputs found

    Hydrological modelling under climate change considering nonstationarity and seasonal effects

    Get PDF
    Traditional hydrological modelling assumes that the catchment does not change with time. However, due to changes of climate and catchment conditions, this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions. In this study IHACRES, a conceptual rainfall–runoff model, is applied to a catchment in southwest England. Long observation data (1961–2008) are used and seasonal calibration (only the summer) has been done since there are significant seasonal rainfall patterns. Initially, the calibration is based on changing the model parameters with time by adapting the parameters using the step forward and backward selection schemes. However, in the validation, both models do not work well. The problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. Therefore, a new scheme is explored. Only one parameter is selected for adjustment while the other parameters are set as the fixed and the regression of one optimised parameter is made not only against time but climate condition. The result shows that this nonstationary model works well both in the calibration and validation periods.</jats:p

    A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS2 Nanometer 2D Material for Self-Powered Sensors

    Get PDF
    A piezoelectric sensor is a typical self-powered sensor. With the advantages of a high sensitivity, high frequency band, high signal-to-noise ratio, simple structure, light weight, and reliable operation, it has gradually been applied to the field of smart wearable devices. Here, we first report a flexible piezoelectric sensor (FPS) based on tungsten disulfide (WS2) monolayers that generate electricity when subjected to human movement. The generator maximum voltage was 2.26 V, and the produced energy was 55.45 μJ of the electrical charge on the capacitor (capacity: 220 μF) when applying periodic pressing by 13 kg. The generator demonstrated here can meet the requirements of human motion energy because it generates an average voltage of 7.74 V (a knee), 8.7 V (a sole), and 4.58 V (an elbow) when used on a running human (weight: 75 kg). Output voltages embody distinct patterns for different human parts, the movement-recognition capability of the cellphone application. This generator is quite promising for smart sensors in human–machine interaction detecting personal movement

    A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables

    Get PDF
    Piezoelectric energy harvesters have attracted much attention because they are crucial in portable industrial applications. Here, we report on a high-power device based on a magneto-mechanical piezoelectric energy harvester to scavenge the AC magnetic field from a power-line cable for industrial applications. The electrical output performance of the harvester (×4 layers) reached an output voltage of 60.8 Vmax, an output power of 215 mWmax (98 mWrms), and a power density of 94.5 mWmax/cm3 (43.5 mWrms/cm3) at an impedance matching of 5 kΩ under a magnetic field of 80 μT. The multilayer energy harvester enables high-output performance, presenting an obvious advantage given this improved level of output power. Finite element simulations were also performed to support the experimental observations. The generator was successfully used to power a wireless sensor network (WSN) for use on an IoT device composed of a temperature sensor in a thermal power station. The result shows that the magneto-mechanical piezoelectric energy harvester (MPEH) demonstrated is capable of meeting the requirements of self-powered monitoring systems under a small magnetic field, and is quite promising for use in actual industrial applications

    Rho-kinase as a therapeutic target for nonalcoholic fatty liver diseases

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a major public health problem and the most common form of chronic liver disease, affecting 25% of the global population. Although NAFLD is closely linked with obesity, insulin resistance, and type 2 diabetes mellitus, knowledge on its pathogenesis remains incomplete. Emerging data have underscored the importance of Rho-kinase (Rho-associated coiled-coil-containing kinase [ROCK]) action in the maintenance of normal hepatic lipid homeostasis. In particular, pharmacological blockade of ROCK in hepatocytes or hepatic stellate cells prevents the progression of liver diseases such as NAFLD and fibrosis. Moreover, mice lacking hepatic ROCK1 are protected against obesity-induced fatty liver diseases by suppressing hepatic de novo lipogenesis. Here we review the roles of ROCK as an indispensable regulator of obesity-induced fatty liver disease and highlight the key cellular pathway governing hepatic lipid accumulation, with focus on de novo lipogenesis and its impact on therapeutic potential. Consequently, a comprehensive understanding of the metabolic milieu linking to liver dysfunction triggered by ROCK activation may help identify new targets for treating fatty liver diseases such as NAFLD.publishersversionpublishe

    Synthesis of nano-Li4Ti5O12 decorated on non-oxidized carbon nanotubes with enhanced rate capability for lithium-ion batteries

    Get PDF
    In this study, we report a facile strategy for the synthesis of Li4Ti5O12 nanoparticles (15-20 nm) uniformly decorated on non-oxidized carbon nanotubes (CNTs) for use as the anode material in Li-ion batteries. In the newly designed microwave solvothermal synthesis, the CNTs were used to selectively heat a substrate for facilitating the preferential precipitation of nanoparticles. The resulting sample delivered a reversible capacity of 172 mA h g(-1) at 1 C-rate and showed remarkable rate capability by maintaining 60% of the capacity at 60 C-rate (vs. 1 C-rate).

    A hepatitis B virus-derived peptide combined with HBsAg exerts an anti-HBV effect in an HBV transgenic mouse model as a therapeutic vaccine

    Get PDF
    IntroductionFor complete or functional cure of hepatitis B virus (HBV) infection, application of immunotherapy is now being attempted. Recently, we reported that a 6-mer hepatitis B virus (HBV)-derived peptide, Poly6, exerts a strong anticancer effect in tumor-implanted mice through inducible nitric oxide synthase (iNOS)-producing DCs (Tip-DCs) in a type 1 interferon (IFN-I)-dependent manner, suggesting its potential as a vaccine adjuvant.MethodsIn this study, we explored the potential of Poly6 in combination with HBsAg as a therapeutic vaccine against hepatitis B virus infection. We investigated the immunotherapeutic potential of Poly6 combined with HBsAg vaccination against hepatitis B virus infection in C57BL/6 mice or an HBV transgenic mouse model.ResultsIn C57BL/6 mice, Poly6 enhanced DC maturation and DC migration capacity in an IFN-I-dependent manner. Moreover, the addition of Poly6 to alum in combination with HBsAg also led to enhanced HBsAg-specific cell-mediated immune (CMI) responses, suggesting its potential as an adjuvant of HBsAg-based vaccines. In HBV transgenic mice, vaccination with Poly6 combined with HBsAg exerted a strong anti-HBV effect via induction of HBV-specific humoral and cell-mediated immune responses. In addition, it also induced HBV-specific effector memory T cells (TEM).DiscussionOur data indicated that vaccination with Poly6 in combination with HBsAg exerts an anti-HBV effect in HBV transgenic mice, which is mainly mediated by HBV-specific CMI and humoral immune responses via IFN-I-dependent DC activation, suggesting the feasibility of Poly6 as an adjuvant for an HBV therapeutic vaccine
    corecore