12 research outputs found

    Acute Exercise Protects Against Doxorubucin Cardiotoxicity

    Get PDF
    Numerous methods have been used to minimize the cardiotoxic effects of the chemotherapeutic agent doxorubicin (DOX), and most have had limited success. Chronic endurance exercise has been shown to protect against DOX cardiotoxicity, but little is known regarding the effects of acute exercise on DOX-induced cardiac dysfunction. Purpose. The purpose of this study was to determine the effects of a single bout of acute endurance exercise on the cardiac dysfunction associated with DOX treatment. Methods. Male Sprague-Dawley rats either performed an acute exercise bout on a motorized treadmill for 60 minutes at a maximal speed of 25 m/min with a 5% grade (EX) or remained sedentary (SED) 24 hours before receiving either a 15-mg/kg DOX bolus dose or saline (SAL). Cardiac function was then analyzed 5 days post injection using a Langendorff isolated perfused heart model. In addition, myocardial lipid peroxidation was analyzed as an indicator of oxidative stress. Results. Doxorubicin treatment alone (SED+DOX) promoted a significant decline in end-systolic pressure (–35%), left ventricular developed pressure (–59%), and the maximal rate of left ventricular pressure development (–43%) as well as a 45% increase in lipid peroxidation products when compared with SED+SAL (P \u3c .05). Acute exercise 24 hours before DOX treatment, however, had a cardioprotective effect, as end-systolic pressure, left ventricular developed pressure, and the maximal rate of left ventricular pressure development were significantly higher in EX+DOX compared with SED+DOX (P \u3c .05) and EX+DOX had similar levels of lipid peroxidation products as SED+SAL Conclusions. An acute exercise bout performed 24 hours before DOX treatment protected against cardiac dysfunction, and this exercise-induced cardioprotection may partly be explained by a reduction in the generation of reactive oxygen species

    Exercise Preconditioning Provides Long-Term Protection Against Early Chronic Doxorubicin Cariotoxicity

    Get PDF
    Acute doxorubicin (DOX) cardiotoxicity can be attenuated by exercise preconditioning, but little is known of whether this cardioprotection continues beyond 10 days post-DOX administration. The purpose of this study was to determine the effects of exercise preconditioning on early chronic DOX-induced cardiotoxicity. Male rats were randomly assigned to sedentary, treadmill, or wheel running groups. Treadmill and wheel running animals participated in a progressive treadmill training protocol or voluntary wheel running, respectively, for 10 weeks. Following the intervention, animals were further randomized to receive either DOX (sedentary + DOX, treadmill + DOX, wheel running + DOX) or saline (sedentary + saline, treadmill + saline, wheel running + saline). All animals then remained sedentary for 4 weeks. A 22% reduction in fractional shortening was observed in left ventricles from previously sedentary animals receiving DOX when compared with sedentary + saline. This degree of decline was not observed in treadmill + DOX and wheel running + DOX. Sedentary + DOX possessed significantly depressed mitral and aortic valve blood flow velocities when compared with sedentary + saline, but these decrements were not observed in treadmill + DOX and wheel running + DOX. Ex vivo analysis revealed that left ventricular developed pressure and maximal rate of pressure development were significantly lower in sedentary + DOX when compared to sedentary + saline. Treadmill and wheel running prior to DOX treatment protected against these decrements. Exercise cardioprotection was associated with preserved myosin heavy chain but not sarcoendoplasmic reticulum Ca2+ ATPase 2a expression. In conclusion, 10 weeks of prior exercise protected against early chronic DOX cardiotoxicity suggesting that training status may be a determining factor in the degree of late-onset cardiotoxicity experienced by cancer patients undergoing treatment with DOX

    Comparison of Back Squat Kinematics Between Barefoot and Shoe Conditions

    No full text
    The purpose of the study was to compare the kinematics of the barbell back squat between two footwear conditions and to evaluate the results with respect to recommendations put forth in the National Strength and Conditioning Association position statement for proper squat technique. Twenty-five subjects with 5 - 7 years of resistance training experience participated. Selected kinematics were measured during a 60% of 1RM barbell back squat in both barefoot and athletic shoe conditions. Paired-samples T tests were performed to compare the two footwear conditions. Significant differences were found in trunk (50.72±8.27 vs. 46.97±9.87), thigh (20.94±10.19 vs. 24.42±11.11), and shank segment angles (59.47±5.54 vs. 62.75±6.17), and knee joint angles (81.33±13.70 vs. 88.32±15.45) at the peak descent position. Based on the kinematic analysis of the barefoot squat, two kinematic advantages are countered by two disadvantages. Coaches and instructors should acknowledge these results with respect to a performer\u27s capability, and be aware the advantages and disadvantages of barefoot squat from a kinematic perspective
    corecore