1,542 research outputs found

    On the magnetization of two-dimensional superconductors

    Full text link
    We calculate the magnetization of a two-dimensional superconductor in a perpendicular magnetic field near its Kosterlitz-Thouless transition and at lower temperatures. We find that the critical behavior is more complex than assumed in the literature and that, in particular, the critical magnetization is {\it not} field independent as naive scaling predicts. In the low temperature phase we find a substantial fluctuation renormalization of the mean-field result. We compare our analysis with the data on the cuprates.Comment: 8 pages, 3 figure

    Finite Size Effects in Vortex Localization

    Full text link
    The equilibrium properties of flux lines pinned by columnar disorder are studied, using the analogy with the time evolution of a diffusing scalar density in a randomly amplifying medium. Near H_{c1}, the physical features of the vortices in the localized phase are shown to be determined by the density of states near the band edge. As a result, H_{c1} is inversely proportional to the logarithm of the sample size, and the screening length of the perpendicular magnetic field decreases with temperature. For large tilt the extended ground state turns out to wander in the plane perpendicular to the defects with exponents corresponding to a directed polymer in a random medium, and the energy difference between two competing metastable states in this case is extensive. The divergence of the effective potential associated with strong pinning centers as the tilt approaches its critical value is discussed as well.Comment: 10 pages, 2 figure

    Nernst effect in the vortex-liquid regime of a type-II superconductor

    Full text link
    We measure the transverse thermoelectric coefficient αxy\alpha_{xy} in simulations of type-II superconductors in the vortex liquid regime, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise. Our results are in reasonably good quantitative agreement with experimental data on cuprate samples, suggesting that this simple model of superconducting fluctuations contains much of the physics behind the large Nernst effect observed in these materials.Comment: 6 pages. Expanded version of text. New Fig.

    Zero Temperature Dynamics of the Weakly Disordered Ising Model

    Full text link
    The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising model is studied at zero-temperature. A single characteristic length scale, L(t)L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with the coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-like; an intermediate regime where the persistence probability decays non-algebraically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the intermediate regime, we find that P(t)L(t)θP(t)\sim L(t)^{-\theta'}, where θ=0.420±0.009\theta' = 0.420\pm 0.009. The value of θ\theta' is consistent with that found for the pure 2d Ising model at zero-temperature. Our results in the intermediate regime are consistent with a logarithmic decay of the persistence probability with time, P(t)(lnt)θdP(t)\sim (\ln t)^{-\theta_d}, where θd=0.63±0.01\theta_d = 0.63\pm 0.01.Comment: references updated, very minor amendment to abstract and the labelling of figures. To be published in Phys Rev E (Rapid Communications), 1 March 199

    Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagome lattice

    Full text link
    We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagome lattice by using a spin-rotation-invariant Green's-function method. Since the pure two-dimensional kagome antiferromagnet is most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of kagome layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign and the strength of the interlayer coupling

    The diurnal vertical dynamics of cape hake and their potential prey

    Get PDF
    The Cape hakes Merluccius capensis and M. paradoxus are dominant predators over the Namibian shelf. They are found in a water column that includes myctophids and other mesopelagic fish, euphausiids andcephalopods. Together with their cohabitant potential prey, hake are known to undertake diurnal vertical migrations, aggregating near the bottom during daylight, but migrating off the bottom at night. An attempt to determine the underlying mechanisms of this diurnal migration by means of underwater acoustics and trawling was made at a single location on the central Namibian shelf at a depth of 350 m during four consecutive days in April 1996. Large M. capensis, 50–75 cm total length, dominated just over the sea bed, whereas 30–40 cm M. paradoxus were most abundant 5–50 m off the bottom, suggesting that the smaller M. paradoxus had to remain higher in the water column to avoid being eaten by the larger M. capensis. Large hake of both species preyed preferentially on fish, whereas the smaller hake preferred euphausiids, although there was some evidence of euphausiid consumption by most hake. There was no distinct daily feeding rhythm in either species of hake, although there was some evidence of evening predation dominating. This may indicate a feeding strategy where vision is not important

    U(1) spin liquids and valence bond solids in a large-N three-dimensional Heisenberg model

    Full text link
    We study possible quantum ground states of the Sp(N) generalized Heisenberg model on a cubic lattice with nearest-neighbor and next-nearest-neighbor exchange interactions. The phase diagram is obtained in the large-N limit and fluctuation effects are considered via appropriate gauge theories. In particular, we find three U(1) spin liquid phases with different short-range magnetic correlations. These phases are characterized by deconfined gapped spinons, gapped monopoles, and gapless ``photons''. As N becomes smaller, a confinement transition from these phases to valence bond solids (VBS) may occur. This transition is studied by using duality and analyzing the resulting theory of monopoles coupled to a non-compact dual gauge field; the condensation of the monopoles leads to VBS phases. We determine the resulting VBS phases emerging from two of the three spin liquid states. On the other hand, the spin liquid state near J_1 \approx J_2 appears to be more stable against monopole condensation and could be a promising candidate for a spin liquid state in real systems.Comment: revtex file 12 pages, 17 figure

    TGF-β-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutively active p38 MAPK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytokines of the transforming growth factor β (TGF-β) superfamily exert effects on proliferation, apoptosis and differentiation in various cell types. Cancer cells frequently acquire resistance to the anti-proliferative signals of TGF-β, which can be due to mutations in proteins of the signalling cascade. We compared the TGF-β-related signalling properties in B-cell lymphoma cell lines that were sensitive or resistant to TGF-β-induced anti-proliferative effects.</p> <p>Results</p> <p>TGF-β sensitive cell lines expressed higher cell surface levels of the activin receptor-like kinase 5 (Alk-5), a TGF-β receptor type 1. The expression levels of the other TGF-β and bone morphogenetic protein receptors were comparable in the different cell lines. TGF-β-induced phosphorylation of Smad2 was similar in TGF-β sensitive and resistant cell lines. In contrast, activation of Smad1/5 was restricted to cells that were sensitive to growth inhibition by TGF-β. Moreover, with activin A we detected limited anti-proliferative effects, strong phosphorylation of Smad2, but no Smad1/5 phosphorylation. Up-regulation of the TGF-β target genes Id1 and Pai-1 was identified in the TGF-β sensitive cell lines. Constitutive phosphorylation of MAPK p38 was restricted to the TGF-β sensitive cell lines. Inhibition of p38 MAPK led to reduced sensitivity to TGF-β.</p> <p>Conclusions</p> <p>We suggest that phosphorylation of Smad1/5 is important for the anti-proliferative effects of TGF-β in B-cell lymphoma. Alk-5 was highly expressed in the sensitive cell lines, and might be important for signalling through Smad1/5. Our results indicate a role for p38 MAPK in the regulation of TGF-β-induced anti-proliferative effects.</p

    Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential

    Full text link
    In this paper we expand our previous investigation of a quantum particle subject to the action of a random potential plus a fixed harmonic potential at a finite temperature T. In the classical limit the system reduces to a well-known ``toy'' model for an interface in a random medium. It also applies to a single quantum particle like an an electron subject to random interactions, where the harmonic potential can be tuned to mimic the effect of a finite box. Using the variational approximation, or alternatively, the limit of large spatial dimensions, together with the use the replica method, and are able to solve the model and obtain its phase diagram in the T(2/m)T - (\hbar^2/m) plane, where mm is the particle's mass. The phase diagram is similar to that of a quantum spin-glass in a transverse field, where the variable 2/m\hbar^2/m plays the role of the transverse field. The glassy phase is characterized by replica-symmetry-breaking. The quantum transition at zero temperature is also discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate file figures.u

    Orientational order on curved surfaces - the high temperature region

    Full text link
    We study orientational order, subject to thermal fluctuations, on a fixed curved surface. We derive, in particular, the average density of zeros of Gaussian distributed vector fields on a closed Riemannian manifold. Results are compared with the density of disclination charges obtained from a Coulomb gas model. Our model describes the disordered state of two dimensional objects with orientational degrees of freedom, such as vector ordering in Langmuir monolayers and lipid bilayers above the hexatic to fluid transition.Comment: final version, 13 Pages, 2 figures, uses iopart.cl
    corecore