4,469 research outputs found

    Chemical pretreatment for the distillation of urine

    Get PDF
    Pretreatment of urine prevents micro-organism growth in boiler and kills micro-organisms in condenser. Chemicals also clean evaporation surface, fix ammonia in boiling chamber, and suppress foaming

    Application of biological filters in water treatment systems

    Get PDF
    Silver chloride placed on or close to barrier kills bacteria as they arrive. Dead bacteria accumulate linearly, whereas previously, live bacteria accumulated exponentially. During continuous 30-day tests, no bacteriological contamination was found downstream of filters with silver chloride added

    Potable water bactericide agent development

    Get PDF
    The results are summarized of the work performed for the development and evaluation of a bactericide agent/system concept capable of being used in the space shuttle potable water system. The concept selected for evaluation doses fuel cell water with silver ions before the water is stored and used, by passing this water through columns packed with silver chloride and silver bromide particles, respectively. Four simulated space shuttle potable water system tests, each of seven days duration, were performed to demonstrate that this concept is capable of delivering sterile water even though 3 + or - 1 x 10 to the 9th power Type IIIa or Pseudomonas aeruginosa bacteria, two types which have been found in the Apollo potable water system, are purposely injected into the system each day. This result, coupled with the fact that silver ions do not have to be periodically added to the stored water, indicates that this concept is superior to the chlorine and iodine techniques used on Apollo

    Study for evaluation of incineration and microwave treatment of human fecal matter for spacecraft operation

    Get PDF
    Incineration and microwave treatment of human fecal matter to determine concentration ranges and identities of liquid, gaseous, and solid product

    The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs

    Get PDF
    Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal Supplement Serie

    TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays

    Full text link
    Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \sim 10^{56} (\Delta \Omega / 4 \pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as \gamma \gtilde 500. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.Comment: Final version to appear in ApJ Lett. Emphasizing that the extremely large energy required in this model is not theoretically impossible if GRB emission is strongly beamed. References update

    Refurbishment and testing of the integrated waste management system Final report, Dec. 1968 - Aug. 1969

    Get PDF
    Refurbishment and testing of integrated waste management system for manned space fligh

    X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE

    Full text link
    We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted by ApJ

    Lognormal Properties of SGR 1806-20 and Implications for Other SGR Sources

    Full text link
    The time interval between successive bursts from SGR 1806-20 and the intensity of these bursts are both consistent with lognormal distributions. Monte Carlo simulations of lognormal burst models with a range of distribution parameters have been investigated. The main conclusions are that while most sources like SGR 1806-20 should be detected in a time interval of 25 years, sources with means about 100 times longer have a probability of about 5\% of being detected in the same interval. A new breed of experiments that operate for long periods are required to search for sources with mean recurrence intervals much longer than SGR 1806-20.Comment: 4 pages, latex with seperate file containing 2 uuencoded, gzip'ed, tarred, .eps figures. Replaced with file that does not use kluwer.sty to allow automatic postscript generation. To appear in proceedings of ESLAB 2

    A waste management subsystem Final technical report

    Get PDF
    Development and evaluation of waste management subsystem for life support system of manned orbiting space statio
    corecore