93 research outputs found

    Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study

    Get PDF
    The influence of musical experience on brain development has been mostly studied in school-aged children with formal musical training while little is known about the possible effects of less formal musical activities typical for preschool-aged children (e.g., before the age of seven). In the current study, we investigated whether the amount of musical group activities is reflected in the maturation of neural sound discrimination from toddler to preschool-age. Specifically, we recorded event-related potentials longitudinally (84 recordings from 33 children) in a mismatch negativity (MMN) paradigm to different musically relevant sound changes at ages 2-3, 4-5 and 6-7 years from children who attended a musical playschool throughout the follow-up period and children with shorter attendance to the same playschool. In the first group, we found a gradual positive to negative shift in the polarities of the mismatch responses while the latter group showed little evidence of age-related changes in neural sound discrimination. The current study indicates that the maturation of sound encoding indexed by the MMN may be more protracted than once thought and provides first longitudinal evidence that even quite informal musical group activities facilitate the development of neural sound discrimination during early childhood

    Neural Encoding of Pitch Direction Is Enhanced in Musically Trained Children and Is Related to Reading Skills

    Get PDF
    Musical training in childhood has been linked to enhanced sound encoding at different stages of the auditory processing. In the current study, we used auditory event-related potentials to investigate cortical sound processing in 9- to 15-year-old children (N = 88) with and without musical training. Specifically, we recorded the mismatch negativity (MMN) and P3a responses in an oddball paradigm consisting of standard tone pairs with ascending pitch and deviant tone pairs with descending pitch. A subsample of the children (N = 44) also completed a standardized test of reading ability. The musically trained children showed a larger P3a response to the deviant sound pairs. Furthermore, the amplitude of the P3a correlated with a pseudo-word reading test score. These results corroborate previous findings on enhanced sound encoding in musically trained children and are in line with studies suggesting that neural discrimination of spectrotemporal sound patterns is predictive of reading ability

    Whole-brain computation of cognitive versus acoustic errors in music : A mismatch negativity study

    Get PDF
    Previous studies have evidenced how the local prediction of physical stimulus features may affect the neural processing of incoming stimuli. Less known are the effects of cognitive priors on predictive processes, and how the brain computes local versus cognitive predictions and their errors. Here, we determined the differential brain mechanisms underlying prediction errors related to high-level, cognitive priors for melody (rhythm, contour) versus low-level, local acoustic priors (tuning, timbre). We measured with magnetoencephalography the mismatch negativity (MMN) prediction error signal in 104 adults having varying levels of musical expertise. We discovered that the brain regions involved in early predictive processes for local priors were primary and secondary auditory cortex and insula, whereas cognitive brain regions such as cingulate and orbitofrontal cortices were recruited for early melodic errors in cognitive priors. The involvement of higher-level brain regions for computing early cognitive errors was enhanced in musicians, especially in cingulate cortex, inferior frontal gyrus, and supplementary motor area. Overall, the findings expand knowledge on whole-brain mechanisms of predictive processing and the related MMN generators, previously mainly confined to the auditory cortex, to a frontal network that strictly depends on the type of priors that are to be computed by the brain.Peer reviewe

    Mindsets and Failures : Neural Differences in Reactions to Mistakes among 2nd Grade Finnish Girls

    Get PDF
    Mindsets have been identified as an important factor in explaining learning differences among students. Growth mindset students have been shown to recover from mistakes easier than fixed mindset students, and recent neuroscientific research has shown differences in the brain’s event-related potentials to errors in fixed and growth mindset participants. The purpose of this study was to examine and evaluate these differences in the Finnish elementary school context. To achieve this, event-related potentials of five fixed and five growth mindset 8-9-year-old female students were recorded during a go/no-go task. Differences between the two groups emerged, however, they were different from the results of some previous studies in the field. These findings are discussed in the light of earlier neuroscientific research related to mindsets, including limitations and suggestions for future research in the field.Peer reviewe

    Healthy full-term infants' brain responses to emotionally and linguistically relevant sounds using a multi-feature mismatch negativity (MMN) paradigm

    Get PDF
    We evaluated the feasibility of a multi-feature mismatch negativity (MMN) paradigm in studying auditory processing of healthy newborns. The aim was to examine the automatic change-detection and processing of semantic and emotional information in speech in newborns. Brain responses of 202 healthy newborns were recorded with a multi-feature paradigm including a Finnish bi-syllabic pseudo-word/ta-ta/as a standard stimulus, six linguistically relevant deviant stimuli and three emotionally relevant stimuli (happy, sad, angry). Clear responses to emotional sounds were found already at the early latency window 100-200 ms, whereas responses to linguistically relevant minor changes and emotional stimuli at the later latency window 300-500 ms did not reach significance. Moreover, significant interaction between gender and emotional stimuli was found in the early latency window. Further studies on using multi-feature paradigms with linguistic and emotional stimuli in newborns are needed, especially those containing of follow-ups, enabling the assessment of the predictive value of early variations between subjects.Peer reviewe

    Maternal sleep quality during pregnancy is associated with neonatal auditory ERPs

    Get PDF
    Poor maternal sleep quality during pregnancy may act as a prenatal stress factor for the fetus and associate with neonate neurocognition, for example via fetal programming. The impacts of worsened maternal sleep on neonatal development and, more specifically on neonatal auditory brain responses, have not been studied. A total of 155 mother-neonate dyads drawn from the FinnBrain Birth Cohort Study participated in our study including maternal self-report questionnaires on sleep at gestational week 24 and an event-related potential (ERP) measurement among 1-2-day-old neonates. For sleep quality assessment, the Basic Nordic Sleep Questionnaire (BNSQ) was used and calculated scores for (1) insomnia, (2) subjective sleep loss and (3) sleepiness were formed and applied in the analyses. In the auditory ERP protocol, three emotionally uttered pseudo words (in happy, angry and sad valence) were presented among neutrally uttered pseudo words. To study the relations between prenatal maternal sleep quality and auditory emotion-related ERP responses, mixed-effects regression models were computed for early (100-200 ms) and late (300-500 ms) ERP response time-windows. All of the selected BNSQ scores were associated with neonatal ERP responses for happy and angry emotion stimuli (sleep loss and sleepiness in the early, and insomnia, sleep loss and sleepiness in the late time-window). For sad stimuli, only maternal sleep loss predicted the neonatal ERP response in the late time-window, likely because the overall ERP was weakest in the sad condition. We conclude that maternal sleep quality during pregnancy is associated with changes in neonatal auditory ERP responses.Peer reviewe

    Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep

    Get PDF
    Introduction: Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Aims: Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Methods: Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results: Results showed that the sound stimulation increased both slow wave (p =.002) and sleep spindle activity (p Conclusions: We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future.Peer reviewe
    • …
    corecore