5,470 research outputs found

    Lineage-tracing methods and the kidney

    Get PDF
    The kidney is a complex organ with over 30 different cell types, and understanding the lineage relationships between these cells is challenging. During nephrogenesis, a central question is how the coordinated morphogenesis, growth, and differentiation of distinct cell types leads to development of a functional organ. In mature kidney, understanding cell division and fate during injury, regeneration and aging are critical topics for understanding disease. Genetic lineage tracing offers a powerful tool to decipher cellular hierarchies in both development and disease because it allows the progeny of a single cell, or group of cells, to be tracked unambiguously. Recent advances in this field include the use of inducible recombinases, multicolor reporters, and mosaic analysis. In this review, we discuss lineage-tracing methods focusing on the mouse model system and consider the impact of these methods on our understanding of kidney biology and prospects for future application

    When a Mechanical Model Goes Nonlinear

    Get PDF
    This paper had its origin in a curious discovery by the first author in research performed with an undergraduate student. The following odd fact was noticed: when a mechanical model of a suspension bridge (linear near equilibrium but allowed to slacken at large distance in one direction) is shaken with a low-frequency periodic force, several different periodic responses can result, many with high-frequency components

    On the He II Emission In Eta Carinae and the Origin of Its Spectroscopic Events

    Full text link
    We describe and analyze Hubble Space Telescope (HST) observations of transient emission near 4680 {\AA} in Eta Car, reported earlier by Steiner & Damineli (2004). If, as seems probable, this is He II λ\lambda4687, then it is a unique clue to Eta Car's 5.5-year cycle. According to our analysis, several aspects of this feature support a mass-ejection model of the observed spectroscopic events, and not an eclipse model. The He II emission appeared in early 2003, grew to a brief maximum during the 2003.5 spectroscopic event, and then abruptly disappeared. It did not appear in any other HST spectra before or after the event. The peak brightness was larger than previously reported, and is difficult to explain even if one allows for an uncertainty factor of order 3. The stellar wind must provide a temporary larger-than-normal energy supply, and we describe a special form of radiative amplification that may also be needed. These characteristics are consistent with a class of mass-ejection or wind-disturbance scenarios, which have implications for the physical structure and stability of Eta Car.Comment: 47 pages (including all appendices, tabs, & figs), 9 figures, 3 tables; submitted to Astrophysical Journal (2005 March 29), accepted for publication in Ap

    Towards durable multistakeholder-generated solutions: The pilot application of a problem-oriented policy learning protocol to legality verification and community rights in Peru

    Get PDF
    This paper reports and reflects on the pilot application of an 11-step policy learning protocol that was developed by Cashore and Lupberger (2015) based on several years of Cashore’s multi-author collaborations. The protocol was applied for the first time in Peru in 2015 and 2016 by the IUFRO Working Party on Forest Policy Learning Architectures (hereinafter referred to as the project team). The protocol integrates insights from policy learning scholarship (Hall 1993, Sabatier 1999) with Bernstein and Cashore’s (2000, 2012) four pathways of influence framework. The pilot implementation in Peru focused on how global timber legality verification interventions might be harnessed to promote local land rights. Legality verification focuses attention on the checking and auditing of forest management units in order to verify that timber is harvested and traded in compliance with the law. We specifically asked: How can community legal ownership of, and access to, forestland and forest resources be enhanced? The protocol was designed as a dynamic tool, the implementation of which fosters iterative rather than linear processes. It directly integrated two objectives: 1) identifying the causal processes through which global governance initiatives might be harnessed to produce durable results ‘on the ground’; 2) generating insights and strategies in collaboration with relevant stakeholders. This paper reviews and critically evaluates our work in designing and piloting the protocol. We assess what seemed to work well and suggest modifications, including an original diagnostic framework for nurturing durable change. We also assess the implications of the pilot application of the protocol for policy implementation that works to enhance the influence of existing international policy instruments, rather than contributing to fragmentation and incoherence by creating new ones

    Approaches for Associating Molecular Polymorphisms with Phenotypic Traits Based on Linkage Disequilibrium in Natural Populations of \u3cem\u3eLolium Perenne\u3c/em\u3e

    Get PDF
    Association mapping relies on linkage disequilibrium (LD) between haplotypes and quantitative trait loci (QTL). The level of LD in a genome determines the resolution of this approach. In out-breeding species, LD is expected to decay rapidly, thus allowing for high-resolution mapping. It has been most extensively used in human genetics, but recent work with maize populations has demonstrated its potential in plants (Thornsberry et al., 2001; Wilson et al., 2004), and used in L. perenne to identify AFLP markers associated with a major QTL for heading date on linkage group 7 (Skøt et al., 2004). The objective of the present work is to associate allelic variation in candidate genes for heading date and water soluble carbohydrates (WSC) in natural populations of L. perenne with phenotypic variation. Both these traits are important breeding targets in ryegrass

    Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    Get PDF
    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm−3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm−2 to −6.60 × 1012 cm−2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices

    Axial Symmetry and Rotation in the SiO Maser Shell of IK Tauri

    Full text link
    We observed v=1, J=1-0 43-GHz SiO maser emission toward the Mira variable IK Tauri (IK Tau) using the Very Long Baseline Array (VLBA). The images resulting from these observations show that SiO masers form a highly elliptical ring of emission approximately 58 x 32 mas with an axial ratio of 1.8:1. The major axis of this elliptical distribution is oriented at position angle of ~59 deg. The line-of-sight velocity structure of the SiO masers has an apparent axis of symmetry consistent with the elongation axis of the maser distribution. Relative to the assumed stellar velocity of 35 km/s, the blue- and red-shifted masers were found to lie to the northwest and southeast of this symmetry axis respectively. This velocity structure suggests a NW-SE rotation of the SiO maser shell with an equatorial velocity, which we determine to be ~3.6 km/s. Such a NW-SE rotation is in agreement with a circumstellar envelope geometry invoked to explain previous water and OH maser observations. In this geometry, water and OH masers are preferentially created in a region of enhanced density along the NE-SW equator orthogonal to the rotation/polar axis suggested by the SiO maser velocities.Comment: 17 Pages, 4 figures (2 color); accepted for publication in Ap
    • …
    corecore