49 research outputs found
Lysosomes in acute myeloid leukemia: potential therapeutic targets?
Lysosomes, since their discovery, have been primarily known for degrading cellular macromolecules. However, in recent studies, they have begun to emerge as crucial regulators of cell homeostasis. They are at the crossroads of catabolic and anabolic pathways and are intricately involved in cellular trafficking, nutrient signaling, energy metabolism, and immune regulation. Their involvement in such essential cellular functions has renewed clinical interest in targeting the lysosome as a novel way to treat disease, particularly cancer. Acute myeloid leukemia (AML) is an aggressive blood cancer with a low survival probability, particularly in older patients. The genomic landscape of AML has been extensively characterized but few targeted therapies (with the exception of differentiation therapy) can achieve a long-term cure. Therefore, there is an unmet need for less intensive and more tolerable therapeutic interventions. In this review, we will give an overview on the myriad of functions performed by lysosomes and their importance in malignant disease. Furthermore, we will discuss their relevance in hematopoietic cells and different ways to potentially target them in AML
Identifying domains of quality of life in children with cancer undergoing palliative care : a qualitative study with professionals
Objective:
The goal of pediatric palliative care (PPC) is to maintain the quality of life (QoL) of children whose lives are threatened. However, there are sparse scientific data on the domains of QoL in this particular context, and no measurement strategies are available. The present study aims to describe the domains of QoL in the context of PPC in oncology, according to the perceptions of professional caregivers.
Method:
Semistructured interviews were conducted with a random sample of 20 professional caregivers from the Division of Hematology/Oncology at Le Centre Hospitalier Universitaire Sainte-Justine (Montréal, Canada). The caregivers were asked about their perceptions about the QoL of the children they have cared for in this context. The data were analyzed using inductive thematic content analysis.
Results:
The analysis allowed us to identify seven domains of QoL: “physical comfort,” “alleviation of psychological suffering,” “fun and the present moment,” “sense of control,” “feeling valued and appreciated,” “feeling that life goes on,” and “meaningful social relationships.”
Significance of Results:
Caregivers recount the regard that should be accorded to maintaining well-being and a sense of fun, as well as fostering the child's abilities, taking account of the progression of the disease, and to fulfilling his or her needs, especially social ones. Our results also demonstrate that all domains were positively referred to by professional caregivers. The data from our study will lead to better assessment of QoL according to the trajectory of a child with advanced cancer while undergoing PPC
Riociguat treatment in patients with pulmonary arterial hypertension: Final safety data from the EXPERT registry
Objective
The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension following Phase 3 randomized trials. The EXPosurE Registry RiociguaT in patients with pulmonary hypertension (EXPERT) study was designed to monitor the long-term safety of riociguat in clinical practice.
Methods
EXPERT was an international, multicenter, prospective, uncontrolled, non-interventional cohort study of patients treated with riociguat. Patients were followed for at least 1 year and up to 4 years from enrollment or until 30 days after stopping riociguat treatment. Primary safety outcomes were adverse events (AEs) and serious adverse events (SAEs) coded using Medical Dictionary for Regulatory Activities preferred terms and System Organ Classes version 21.0, collected during routine clinic visits (usually every 3–6 months) and collated via case report forms.
Results
In total, 326 patients with PAH were included in the analysis. The most common AEs in these patients were dizziness (11.7%), right ventricular (RV)/cardiac failure (10.7%), edema/peripheral edema (10.7%), diarrhea (8.6%), dyspnea (8.0%), and cough (7.7%). The most common SAEs were RV/cardiac failure (10.1%), pneumonia (6.1%), dyspnea (4.0%), and syncope (3.4%). The exposure-adjusted rate of hemoptysis/pulmonary hemorrhage was 2.5 events per 100 patient-years.
Conclusion
Final data from EXPERT show that in patients with PAH, the safety of riociguat in clinical practice was consistent with clinical trials, with no new safety concerns identified and a lower exposure-adjusted rate of hemoptysis/pulmonary hemorrhage than in the long-term extension of the Phase 3 trial in PAH
Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot
Este artículo pertenece a un número especial: Autophagy in CancerAutophagy is a highly conserved degradation mechanism that is essential for maintaining
cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and
there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there
is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the
fact that autophagy is characterized by the flux of substrates whereas histology informs only about
amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years.
The importance of establishing clear-cut autophagy markers that can be used for tissue analysis
cannot be underestimated. In this review, we attempt to summarize known techniques to quantify
autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations
that should be taken into consideration to improve the reliability and the interpretation of autophagy
biomarkers in human tissue samplesInstitute de Salud Carlos III (ISCIII) y Fondos FEDER de la UE PI14/01085 y PI17/00093Ministerio de Ciencia, Innovación y Universidades RTI2018-096748-B-100 to N.A.Ministerio de Ciencia, Innovación y Universidades FPU17/00026Consejería de Igualdad, Salud y Políticas Sociales PI-0198-2016Fondos FEDER de la UE NORTE-01-0145-FEDER-000013 y los proyectos POCI-01-0145-FEDER-028159 y POCI-01-0145-FEDER-03078
Corrigendum to "Chaperone-Mediated Autophagy Markers LAMP2A and HSC70 Are Independent Adverse Prognostic Markers in Primary Resected Squamous Cell Carcinomas of the Lung".
[This corrects the article DOI: 10.1155/2020/8506572.]
Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions.
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation
Assessing autophagy in archived tissue or how to capture autophagic flux from a tissue snapshot
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples.This work was supported by grants from the Bernese Cancer League, “Stiftung für klinisch-experimentelle Tumorforschung”, and the Werner and Hedy Berger-Janser Foundation for Cancer Research (to M.H.); by Institute of Health Carlos III (ISCIII) and FEDER funds from the EU (PI14/01085 and PI17/00093) and supported by Miguel Servet contract by ISCIII and FSE funds (CPII16/00023) (to M.M.); from the Spanish Ministry of Science, Innovation and Universities (RTI2018-096748-B-100 to N.A.); from the University Professor Training Fellowship, Ministry of Science, Innovation and University, Government of Spain (FPU17/00026) (to P.C.O); from the ISCIII (PI16/00090 and PI19/01266) and the Andalusian Government (Consejería de Igualdad, Salud y Políticas Sociales, PI-0198-2016) for their financial support, and from the Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd) founded by the ISCIII and co-financed by European Development Regional Fund (EDRF) “A way to achieve Europe” for their financial support (to J.M.), from Breakthrough Cancer Research, Ireland funding (to S.L.M); from the PI18/00442 grant integrated into the State Plan for R & D + I2013-2016 and funded by the ISCIII and the ERDF, a way to make Europe (to G.V.); from the Luxembourg National Research Fund (C18/BM/12670304/COMBATIC to B.J.); from the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, by the European Regional Development Fund (FEDER), through the Competitiveness Factors Operational Programme (COMPETE) (NORTE-01-0145-FEDER-000013) and from the projects POCI-01-0145-FEDER-028159 and POCI-01-0145-FEDER-030782 by FEDER, through the COMPETE (to P.L.); from National funds, through the Foundation for Science and Technology (FCT) (to P.L.); from ARRS—the Slovenian research agency, programme P1-0140: Proteolysis and its regulation (led by B. Turk) (to E.Ž.); from the Swiss Cancer Research (KFS-3360-02-2014) (to A.P, and M.P.T.) (KFS-3409-02-2014), and the Swiss National Science Foundation (31003A_173219) (to M.P.T.)
Low Autophagy (ATG) Gene Expression Is Associated with an Immature AML Blast Cell Phenotype and Can Be Restored during AML Differentiation Therapy
Autophagy is an intracellular degradation system that ensures a dynamic recycling of a variety of building blocks required for self-renewal, homeostasis, and cell survival under stress. We used primary acute myeloid leukemia (AML) samples and human AML cell lines to investigate the regulatory mechanisms of autophagy and its role in AML differentiation. We found a significantly lower expression of key autophagy- (ATG-) related genes in primary AML as compared to healthy granulocytes, an increased autophagic activity during all-trans retinoic acid- (ATRA-) induced neutrophil differentiation, and an impaired AML differentiation upon inhibition of ATG3, ATG4D, and ATG5. Supporting the notion of noncanonical autophagy, we found that ATRA-induced autophagy was Beclin1-independent compared to starvation- or arsenic trioxide- (ATO-) induced autophagy. Furthermore, we identified PU.1 as positive transcriptional regulator of ATG3, ATG4D, and ATG5. Low PU.1 expression in AML may account for low ATG gene expression in this disease. Low expression of the autophagy initiator ULK1 in AML can partially be attributed to high expression of the ULK1-targeting microRNA-106a. Our data clearly suggest that granulocytic AML differentiation relies on noncanonical autophagy pathways and that restoring autophagic activity might be beneficial in differentiation therapies
Distinct TP73-DAPK2-ATG5 pathway involvement in ATO-mediated cell death versus ATRA-mediated autophagy responses in APL.
We have previously demonstrated that the death-associated protein kinase 2 (DAPK2) expression is significantly reduced in acute myeloid leukemia (AML), particularly in acute promyelocytic leukemia (APL) blast cells. In this study, we aimed at further understanding DAPK2 function and regulation during arsenic trioxide (ATO) cytotoxic or all-trans retinoic acid (ATRA) differentiation therapy in APL cells. We found that the p53 family member transactivation domain-p73 isoform (TAp73) binds to and activates the DAPK2 promoter, whereas the dominant-negative ΔNp73 isoform inhibits DAPK2 transcription. Furthermore, the knocking down of tumor protein p73 (TP73) in NB4 cells resulted in reduced DAPK2 expression associated with decreased cell death and autophagy upon ATO and ATRA treatment, respectively. Moreover, the silencing of DAPK2 revealed that DAPK2 is an important downstream effector of p73 in ATO-induced apoptosis but not autophagy responses of APL cells. In contrast, the p73-DAPK2 pathway is essential for ATRA-induced autophagy that is mediated by an interaction of DAPK2 with the key autophagy-related protein (ATG)5. Lastly, we show that DAPK2 binds and stabilizes the p73 protein; thus, we propose a novel mechanism by which ATO- or ATRA-induced therapy responses initiate a positive p73-DAPK2 feedback loop