701 research outputs found

    Phylodynamics on local sexual contact networks

    Full text link

    Estimating the dynamics and dependencies of accumulating mutations with applications to HIV drug resistance

    Get PDF
    We introduce a new model called the observed time conjunctive Bayesian network (OT-CBN) that describes the accumulation of genetic events (mutations) under partial temporal ordering constraints. Unlike other CBN models, the OT-CBN model uses sampling time points of genotypes in addition to genotypes themselves to estimate model parameters. We developed an expectation-maximization algorithm to obtain approximate maximum likelihood estimates by accounting for this additional information. In a simulation study, we show that the OT-CBN model outperforms the continuous time CBN (CT-CBN) (Beerenwinkel and Sullivant, 2009. Markov models for accumulating mutations. Biometrika 96(3), 645-661), which does not take into account individual sampling times for parameter estimation. We also show superiority of the OT-CBN model on several datasets of HIV drug resistance mutations extracted from the Swiss HIV Cohort Study databas

    Integrase Strand Transfer Inhibitor Use and Cancer Incidence in a Large Cohort Setting

    Full text link
    BACKGROUND Limited data exist examining the association between incident cancer and cumulative integrase inhibitor (INSTI) exposure. METHODS Participants were followed from baseline (latest of local cohort enrollment or January 1, 2012) until the earliest of first cancer, final follow-up, or December 31, 2019. Negative binomial regression was used to assess associations between cancer incidence and time-updated cumulative INSTI exposure, lagged by 6 months. RESULTS Of 29 340 individuals, 74% were male, 24% were antiretroviral treatment (ART)-naive, and median baseline age was 44 years (interquartile range [IQR], 36-51). Overall, 13 950 (48%) individuals started an INSTI during follow-up. During 160 657 person-years of follow-up ([PYFU] median 6.2; IQR, 3.9-7.5), there were 1078 cancers (incidence rate [IR] 6.7/1000 PYFU; 95% confidence interval [CI], 6.3-7.1). The commonest cancers were non-Hodgkin lymphoma (n = 113), lung cancer (112), Kaposi's sarcoma (106), and anal cancer (103). After adjusting for potential confounders, there was no association between cancer risk and INSTI exposure (≤6 months vs no exposure IR ratio: 1.15 [95% CI, 0.89-1.49], >6-12 months; 0.97 [95% CI, 0.71-1.32], >12-24 months; 0.84 [95% CI, 0.64-1.11], >24-36 months; 1.10 [95% CI, 0.82-1.47], >36 months; 0.90 [95% CI, 0.65-1.26] [P = .60]). In ART-naive participants, cancer incidence decreased with increasing INSTI exposure, mainly driven by a decreasing incidence of acquired immune deficiency syndrome cancers; however, there was no association between INSTI exposure and cancer for those ART-experienced (interaction P < .0001). CONCLUSIONS Cancer incidence in each INSTI exposure group was similar, despite relatively wide CIs, providing reassuring early findings that increasing INSTI exposure is unlikely to be associated with an increased cancer risk, although longer follow-up is needed to confirm this finding

    Cellular Viral Rebound after Cessation of Potent Antiretroviral Therapy Predicted by Levels of Multiply Spliced HIV-1 RNA Encoding nef

    Get PDF
    To characterize newly arising replication of human immunodeficiency virus (HIV) type 1 in vivo at the cellular level, distinct viral RNA species in peripheral blood mononuclear cells (PBMCs) from HIV-1-infected patients were monitored during 2 weeks of structured treatment interruption (STI). HIV-1 RNA encoding tat/rev and PBMC-associated virions were almost completely depleted during antiretroviral therapy and emerged simultaneously after 2 weeks of STI, thus specifically reflecting productive viral infection at the cellular level. The magnitude of these correlates of reappearing cellular viral replication was predicted by during-therapy levels of nef transcripts in PBMCs. Significant rebound of plasma viremia, representing the progeny of a broader range of anatomical compartments, preceded and predicted productive infection in PBMCs. Thus, cellular viral rebound in PBMCs likely was primed before STI by the expression of nef in HIV-1-infected PBMCs that lacked virion production and was subsequently triggered by the plasma viremia that preceded the recurrence of productively infected PBMC

    HIV-1 Superinfection in an HIV-2-Infected Woman with Subsequent Control of HIV-1 Plasma Viremia

    Get PDF
    A human immunodeficiency virus type 2 (HIV-2)-infected woman experienced asymptomatic superinfection with HIV-1 subtype AG. She did not have cross-neutralizing autologous HIV-1 antibodies before and shortly after HIV-1 superinfection. This evidence supports a mechanism other than cross-neutralizing antibodies for the mild course of HIV-1 infection in this woma

    Frequency and Spectrum of Unexpected Clinical Manifestations of Primary HIV-1 Infection

    Get PDF
    We studied the clinical manifestations among 290 patients with documented primary human immunodeficiency virus type 1 infection (PHI) of whom 30% presented with unexpected patterns of signs and symptoms or occurrence of opportunistic diseases. Morbidity associated with PHI was substantia

    A highly virulent variant of HIV-1 circulating in the Netherlands

    Full text link
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence

    Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery

    Full text link
    Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner

    Efficient Suppression of Minority Drug-Resistant HIV Type 1 (HIV-1) Variants Present at Primary HIV-1 Infection by Ritonavir-Boosted Protease Inhibitor-Containing Antiretroviral Therapy

    Get PDF
    Background. Selection of preexisting minority variants of drug-resistant human immunodeficiency virus type 1 (HIV-1) can lead to virological failure in patients who receive antiretroviral therapy (ART) with low genetic resistance barriers. We studied treatment response and dynamics of minority variants during the first weeks of ART containing a ritonavir-boosted protease inhibitor (PI) and 2 nucleoside reverse-transcriptase inhibitors (NRTIs), which is a regimen with a high genetic resistance barrier. Methods. Plasma samples obtained prior to initiation of ART from 109 patients with primary HIV infection and samples obtained during viral decay during early ART from 17 of these 109 patients were tested by allelespecific polymerase chain reaction for K103N and M184V variants. Results. K103N and/or M184V mutations were detected in 15 (13.8%) of 109 patients prior to ART asminority variants. No selection of these variants was observed within the first weeks of ART in 7 of 15 patients with preexisting drug resistance mutations, nor was any selection observed in 10 patients without preexisting drug resistance mutations. Most patients received ART immediately after diagnosis of HIV-1 infection, showed a rapid decrease in viral load, and experienced sufficient suppression of viremia for ⩽48 months. Conclusions. Minority variants, in particular viruses harboring the M184V mutation, were efficiently suppressed in patients with acute infection who received a ritonavir-boosted PI and 2 NRTIs (most regimens included lamivudine). Under this high genetic resistance barrier regimen, the M184V was not further selecte
    corecore