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SUMMARY

We introduce a new model called the observed time conjunctive Bayesian network (OT-CBN) that
describes the accumulation of genetic events (mutations) under partial temporal ordering constraints.
Unlike other CBN models, the OT-CBN model uses sampling time points of genotypes in addition
to genotypes themselves to estimate model parameters. We developed an expectation–maximization
algorithm to obtain approximate maximum likelihood estimates by accounting for this additional infor-
mation. In a simulation study, we show that the OT-CBN model outperforms the continuous time CBN
(CT-CBN) (Beerenwinkel and Sullivant, 2009. Markov models for accumulating mutations. Biometrika
96(3), 645–661), which does not take into account individual sampling times for parameter estimation.
We also show superiority of the OT-CBN model on several datasets of HIV drug resistance mutations
extracted from the Swiss HIV Cohort Study database.

Keywords: Conjunctive Bayesian networks; Expectation–maximization algorithm; Genetic progression; HIV drug
resistance; Maximum likelihood estimation.

1. INTRODUCTION

HIV drug resistance development is a consequence of viral evolution. This evolutionary process is charac-
terized mainly by the accumulation of resistance mutations, i.e. mutations that confer a selective advantage
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under the selective pressure of antiviral drugs. Models of HIV viral evolution have been shown to improve
the prediction of therapy response (Beerenwinkel, Sing and others, 2005; Deforche and others, 2008;
Altmann and others, 2009; Prosperi and others, 2009; Beerenwinkel and others, 2013). Models of the
accumulation of beneficial mutations have also been used successfully in other biological applications
such as the somatic evolution of cancer (Rahnenführer and others, 2005; Gerstung and others, 2009).
Different statistical models have been proposed for modeling the accumulation of mutations such as muta-
genetic trees (Desper and others, 1999), mutagenetic trees with hidden inner nodes (von Heydebreck and
others, 2004), mixture models of mutagenetic trees (Beerenwinkel, Rahnenführer and others, 2005), and
conjunctive Bayesian networks (CBNs) (Beerenwinkel and others, 2006). In these models, the order in
which mutations accumulate are subject to some constraints. Consequently, evolution follows only a sub-
set of all possible mutational pathways from the wild type, the genotype carrying no mutation, to the fully
resistant genotype, the genotype carrying all resistance mutations. It has been suggested that only very few
mutational paths are needed to explain the molecular evolution of drug resistance (Weinreich and others,
2006; Poelwijk and others, 2007; Lozovsky and others, 2009).

CBNs are specialized Bayesian networks defined by a partially ordered set (poset) of mutations
(Beerenwinkel and others, 2006). The partial order specifies the ordering constraints in which mutations
can happen. In contrast to general Bayesian networks, in CBNs, a mutation can only occur if all its pre-
decessor mutations have already occurred. The number of free parameters in the model is equal to the
number of mutations, in contrast to general Bayesian networks, where the number of parameters can grow
exponentially in the number of mutations. Hence, CBNs generally do not suffer from non-identifiability
problems and there exist computationally efficient inference algorithms for these models (Beerenwinkel
and Sullivant, 2009; Gerstung and others, 2009; Sakoparnig and Beerenwinkel, 2012). CBNs can be dis-
crete or continuous in time. The continuous time CBN (CT-CBN) represents a waiting time process for the
accumulation of mutations (Beerenwinkel and Sullivant, 2009). In this model, the occurrence time of each
mutation is assumed to be exponentially distributed with a specific rate of evolution for each mutation. The
waiting time process of a mutation starts only when all its predecessor mutations have already occurred.

Given that the occurrence times of mutations are available for each observation, the maximum likeli-
hood (ML) estimates of the evolutionary rates and of the poset structure of the CT-CBN model are given
in Beerenwinkel and Sullivant (2009). However, in practice, occurrence times of individual mutations are
not observed, but usually we can only measure which mutations have occurred before a certain sampling
time ts . In some applications, sampling times themselves are difficult to measure. For instance, in cancer
progression, due to the fact that the start of the tumor evolutionary process is not known, measurement of
the relative sampling time is generally impossible. For such applications, the CT-CBN model assumes the
unknown sampling times are themselves random and drawn from an independent exponential distribution,
Ts ∼ exp(λs). Omitting sampling times of individual genotypes in the estimation process results in less
accurate estimates of evolutionary rates and of poset structures, especially when the sampling times are
not exponentially distributed or not independent of the mutational process.

In other applications, the sampling times for individual genotypes are observable. For instance, the
evolutionary escape process of HIV starts from the onset of therapy and the HIV genome is typically
determined after virological failure, i.e. after the total viral load exceeding a certain threshold. Hence, the
sampling time is simply the time from the start of the therapy to genotyping. These data are available in
the Swiss HIV Cohort Study (SHCS) database, a large observational cohort in Switzerland with integrated
genotypic drug resistance test results (von Wyl and others, 2007; Schoeni-Affolter and others, 2010). Here,
we propose a new model called observed time CBN (OT-CBN) which performs parameter estimation
not only based on observed genotypes but also on the corresponding sampling times. In particular, we
develop an expectation–maximization (EM) algorithm (Dempster and others, 1977) for approximating
ML estimates. The EM algorithm takes into account this additional temporal information and performs
estimation of evolutionary rates using the input data D = (gi , ts,i )i=1,...,N where genotype gi is observed
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at sampling time ts,i for the i th observation and N is the number of observations. Simulation studies
and application to several HIV datasets from the SHCS show that using the sampling times significantly
improves accuracy of parameter estimation and model selection.

This paper is organized as follows. In Section 2, we formally introduce the OT-CBN. In Section 2, we
present the EM algorithm for approximating the ML estimates of the model. Section 3 reports performance
measures of the OT-CBN and CT-CBN models in different simulation settings. In Section 4, the applica-
tions of the OT-CBN model to several datasets of HIV drug resistance mutations are presented. Finally, we
close with conclusions in Section 5.

2. OBSERVED TIME CONJUCTIVE BAYESIAN NETWORKS

In this section, we introduce the OT-CBN and derive some of its properties. The OT-CBN model, like
other CBN models, is a non-ergodic continuous time Markov chain model on the distributive lattice of
a partially ordered set (poset) of events. In our model, the poset P is a set of genetic events (i.e. muta-
tions) with ground set [n] = {1, . . . , n} and a transitive relation � which specifies constraints on the order
in which events can occur. We use the terms “event” and “mutation” interchangeably in this paper. The
relation i ≺ j implies that event i must happen before event j . The state space of the OT-CBN model is
J (P) × R+. Each observation consists of a genotype g ∈ J (P) and its sampling time t ∈R+ where J (P)

is the distributive lattice of order ideals of P . An order ideal is a subset of events g ⊆ P for which i ∈ g
whenever i ≺ j and j ∈ g. The order ideals in J (P) correspond to the genotypes (or mutational patterns,
or subsets of mutations) compatible with the poset P . The wild type is denoted by ∅ ∈ J (P) and is defined
as the genotype carrying no mutation. For each event i ∈ P , we define an exponentially distributed random
variable Zi ∼ Exp(λi ) and a random variable Ti as

Ti = max
j∈pa(i)

Tj + Zi , (2.1)

where pa(i) is the set of parents of event i in the poset P . The random variable Ti represents the occurrence
time of event i by assuming that no events have been observed at time zero. The random variable Ti is not
observed. The density function of the random vector T = (T1, . . . , Tn) is

fP,�(t) =
n∏

i=1

fλi

(
ti − max

j∈pa(i)
t j

)
, (2.2)

where �n = (λ1, . . . , λn) ∈Rn
+, and the density function fλi is the univariate exponential probability den-

sity function. The density function fP,� is zero if there exists an event i ∈ P such that ti < max j∈pa(i) t j .
A genotype with occurrence times t is said to be compatible with the poset P if fP,�(t) > 0, or equiva-
lently if ti � max j∈pa(i) t j for all i ∈ P , i.e. if no mutation occurred before any of its predecessor mutations
in the poset.

EXAMPLE 2.1 As a running example, we consider the poset P defined on the set {1, 2, 3, 4} with the
relations 1 ≺ 3, 2 ≺ 4, 2 ≺ 3, displayed in Figure 1(a). The corresponding genotype lattice J (P) con-
sists of eight genotypes compatible with the poset (Figure 1(b)). The random variables Ti and Zi are
defined as Zi ∼ Exp(λi ), i = 1, . . . , 4, T1 = Z1, T2 = Z2, T3 = Z3 + max(T1, T2), and T4 = Z4 + T2. For
t1, t2 � 0, t3 � max(t1, t2), t4 � t2, the joint exponential probability density function is given by

f (t) = λ1λ2λ3λ4 exp(−λ1t1) exp(−λ2t2) exp[−λ3{t3 − max(t1, t2)}] exp{−λ4(t4 − t2)},
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(a) (b)

Fig. 1. The poset P , consisting of four elements subject to the relations 1 ≺ 3, 2 ≺ 3, and 2 ≺ 4, is shown in (a). Each
vertex labeled i ∈ P represents the random variable Ti that describes the waiting time for event i . The corresponding
genotype lattice J (P), consisting of eight genotypes compatible with the poset P , is shown in (b).

and otherwise the density is zero. Figure 1(a) and 1(b) of supplementary material available at Biostatistics
online illustrate two realizations of the random variables Ti and Zi for the chains 1 ≺ 2 ≺ 3 ≺ s ≺ 4 and
2 ≺ 1 ≺ s ≺ 4 ≺ 3, respectively, where s is the sampling event.

Let g ∈ J (P) be a genotype. The set Exit(g) = { j ∈ P | j /∈ g, g ∪ j ∈ J (P)} is the set of events that are
not in g but that can happen next. We define for any subset A ⊆ P , λA = ∑

j∈A λ j , and TA = {Tj | j ∈ A}.
The complement of a genotype g is denoted by ḡ = P \ g. We define the poset Qg by adding a new event
s for the sampling time ts to the poset P , i.e. Qg = P ∪ s. The poset Qg has extra relations imposed by
the observed genotype g. In addition to the relations in the poset P , it consists of the relations i ≺ s for
all i ∈ g and s ≺ i for all i /∈ g. The poset Qg is said to refine the poset P by the genotype g. Figure 2(a)
and (c) of supplementary material available at Biostatistics online show the refinements of the poset P ,
defined in Example 2.1, for the genotypes {1, 2} and {1, 2, 3}, respectively.

A chain in J (P) is a collection of subsets C0, . . . , Ck ∈ J (P) with Ci � Ci+1 for all i . A chain with
maximum length is called a maximal chain. Maximal chains in J (P) have length n + 1 with n = |P|. We
denote by C(J (P)) the set of all maximal chains in J (P). For any maximal chain, C = (C0, . . . , Cn), we
have C0 = ∅ and Cn = P . For every maximal chain C in J (Qg), in addition it holds that C|g| = g. Equiv-
alently, a chain is denoted by the sequence of corresponding events, C1\C0 → C2\C1 → · · · → Cn\Cn−1.

EXAMPLE 2.2 Figure 2(b) and (d) of supplementary material available at Biostatistics online show the
genotype lattices refined by the genotypes {1, 2} and {1, 2, 3} for the poset P of Example 2.1, respectively.
For the genotype lattice J (P), there are five maximal chains 1 → 2 → 3 → 4, 1 → 2 → 4 → 3, 2 → 1 →
3 → 4, 2 → 1 → 4 → 3, and 2 → 4 → 1 → 3, while the refined genotype lattice J (Q{1,2,3}) consists of
only two maximal chains 1 → 2 → 3 → 4 and 2 → 1 → 3 → 4. The chain 2 → 1 → 3 → 4 is denoted
alternatively by C = (∅, {2}, {2, 1}, {2, 1, 3}, {2, 1, 3, 4}).

Let T be a random vector of mutation occurrence times and g be an observed genotype at sampling
time ts . The random variable T is said to be compatible with a poset P , denoted by T � P , if Ti � Tj for
every i ≺ j in P . We use the notation (T, ts) � Qg when the random vector (T, ts) is compatible with the
refined poset Qg .
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(a) (b)

(c)

Fig. 2. The poset with three events and the relations 1 ≺ 3 and 2 ≺ 3 (Example 2.4) is shown in (a). The corresponding
genotype lattice is shown in (b). Genotype probabilities for all compatible genotypes versus sampling time are shown
in (c). Theorem 2.3 is used to compute the genotype probabilities.

THEOREM 2.3 Let the random vector T , as defined in (2.1), be compatible with the poset P, i.e. T � P .
Then the probability that T is compatible with the refined poset Qg at sampling time ts is

Prob{(T, ts) � Qg} =
n∏

i=1

λi

∑
C∈C(J (Qg))

�s{(λExit(C0), . . . , λExit(Cn−1)), l},

where l = |g| is the number of mutations in genotype g and

�s{(λ1, . . . , λn), l} =
∫ ts

u1=0

∫ ts−u1

u2=0
· · ·

∫ ts−(u1+···+ul−1)

ul=0

∫ ∞

ul+1=ts−(u1+···+ul )

· · ·
∫ ∞

un=0

n∏
i=1

exp(−λi ui ) du.

(2.3)
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Proof. The proof is given in supplementary material available at Biostatistics online. �

EXAMPLE 2.4 Let P be the poset defined on the ground set {1, 2, 3} with the relations 1 ≺ 2 and 1 ≺ 3
(Figure 2(a)). The possible genotypes are ∅, {1}, {2}, {1, 2}, {1, 2, 3}. The corresponding genotype lattice
of this poset, J (P), is displayed in Figure 2(b). The probabilities of observing different genotypes are
shown in Figure 2(c). Theorem 2.3 is used to compute these probabilities. The wild type is the dominant
genotype in the very beginning of the evolutionary process (small sampling times). For higher sampling
times, the fully resistant genotype becomes dominant.

The estimation of the OT-CBN model consists of two parts: learning the ML poset and estimat-
ing the ML rate parameters for a given poset. We will discuss the poset learning in Section 4. In
the rest of this section, we present a method to perform parameter estimation for a given poset using
observed genotypes and sampling times. Since occurrence time for each mutation, ti , is a latent vari-
able in the joint density function (2.2), it is not possible to compute the density (2.2) from observed
data. Hence, we use the EM algorithm to find approximate ML estimates of the rate parameters λ.
In the E-step of the EM algorithm, for each mutation i ∈ P , we need to compute the expected value,
E[Ti − max j∈pa(i) Tj |(T, ts) � Qg], for each pair of observed genotype and sampling time, (g, ts). These
expected values are the expected sufficient statistics for λ, therefore in the M-step of the EM algorithm, the
new estimate of λi is N/

∑N
k=1 E[Ti − max j∈pa(i) Tj | (T, ts,k) � Qgk ] where N is the number of observa-

tions. Theorem 2.5 can be used to compute this expectation. Similar to the technique used in Theorem 2.3,
the integration required for computing the expectation is decomposed into sum of integrals over simpler
regions. Each of these integrals is then computed by the recursive formula given in Proposition 2 of sup-
plementary material available at Biostatistics online, Appendix C.

THEOREM 2.5 The expected value of Ti − max j∈pa(i) Tj given (T, ts) � Qg is

E

[
Ti − max

j∈pa(i)
Tj

∣∣∣∣ (T, ts) � Qg

]

=
∏n

i=1 λi

Prob{(T, ts) � Qg}
∑

C∈C(J (Qg))

n∑
k=1

ι(i, Ck−1)ζs{(λExit(C0), . . . , λExit(Cn−1)), k, l},

where ι(i, Ck) = 1 if i /∈ Ck and pa(i) ⊆ Ck , and 0 otherwise, and the function ζs is defined as

ζs{(λ1, . . . , λn}, k, l)

=
∫ ts

u1=0

∫ ts−u1

u2=0
. . .

∫ ts−(u1+···+ul−1)

ul=0

∫ ∞

ul+1=ts−(u1+···+ul )

. . .

∫ ∞

un=0
uk

n∏
i=1

exp(−λi ui ) du. (2.4)

Proof. The proof is given in supplementary material available at Biostatistics online. �

In summary, we developed a new EM algorithm for the estimation of the evolutionary rates for the
given poset structure. In the E-step, the conditional expected values of random variable Ti − max j∈pa(i) Tj

(or simply Zi ) is computed for each observation and each mutation i ∈ P . In the M-step, these expected
values are then used to compute the MLEs for the rate parameters λ. The EM algorithm is implemented in
the R language and the code is available at: http://www.cbg.ethz.ch/software/otcbn.

http://www.cbg.ethz.ch/software/otcbn
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3. SIMULATION STUDY

We studied the performance of the OT-CBN and CT-CBN models in simulation experiments. Estimated
rate parameters (λ̂OT

e and λ̂CT
e ) of two models were compared with the true rate parameter for each event e of

a given poset. The mean absolute error (MAE), |λ̂e − λe|, was computed for each event. The relative MAE
difference, �MAEe = (MAECT

e − MAEOT
e )/MAECT

e , is reported for each event e of the considered posets
for different simulation settings (see Tables 1–3 of supplementary material available at Biostatistics online).

In our simulation experiments, we studied 6 different posets: two empty posets and two linear posets
each with four and six events, the poset shown in Figure 1(a) and the poset depicted in Figure 3 of supple-
mentary material available at Biostatistics online. We investigated different sampling time distributions,
namely sampling at constant time c for all samples (the density function is δ(c) where δ(·) is the Dirac
delta function), exponential sampling time distribution Ts ∼ exp(λs), normal sampling time distribution
N (μs, σs), and a distribution in which sampling time depends on the mutational process. The dependent
sampling time distribution is a mixture of the distribution of max(T1, T2) (the waiting time to the occur-
rence of both the first and second mutation) and a uniformly distributed component to introduce variability
into the simulated datasets. The weight of the uniform component is 0.05. The parameters of the different
sampling distributions except the dependent distribution are selected such that the expected value of the
sampling time is equal to one. Hence, all the parameters c, λs , and μs are equal to one and the standard
error of the normal distribution is set to σs = μs/10. For each poset, the rate parameter of each mutation,
λe, was generated by drawing uniform random numbers between 1

2 and 2 (between two-fold slower and
faster than average sampling time).

We drew N pairs of genotypes and corresponding sampling times, (gi , ts,i ) for i = 1, . . . , N , for each
parameter setting. The OT-CBN and CT-CBN models were estimated and compared using the simulated

Fig. 3. ML estimation of the OT-CBN and CT-CBN models for the HIV dataset ZDV+3TC-all. The maximum log-
likelihoods are computed for different fractions of incompatible genotypes, 1 − α. We generated this plot by estimating
maximal posets Pε for all possible values of ε in the extended model. Filled circles correspond to the ML posets of
the OT-CBN and CT-CBN models (the poset is shown in Figure 4(d) for the OT-CBN model).
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data. Tables 1–3 of supplementary material available at Biostatistics online show the results for the empty
posets, the linear posets, and two posets shown in Figure 1(a) and Figure 3 of supplementary material
available at Biostatistics online, respectively. Wilcoxon signed rank tests (paired tests) of the relative MAE
of the OT-CBN model against the CT-CBN model were performed for all events. The p-values are corrected
for multiple testing using the Benjamini–Hochberg method and significant ones are represented by adding
an asterisk next to the relative MAE in Tables 1–3 of supplementary material available at Biostatistics
online. For constant, normal, and dependent sampling distributions, the OT-CBN outperforms the CT-
CBN in 87 comparisons out of a total of ninety comparisons (83 of them are significant). The CT-CBN
model assumes that sampling times are distributed exponentially and hence its performance is better for
exponential sampling distribution. Even in this case, the OT-CBN still outperforms the CT-CBN in 24
comparisons (only one of them is significant) and the CT-CBN is better in the other six comparisons (only
two of them are significant). Tables 4–6 of supplementary material available at Biostatistics online show
the similar results when the relative mean squared error is used as the performance measure. No major
difference has been observed between the results of two performance measures.

It is evident from the simulation results that the OT-CBN is more accurate than the CT-CBN model in the
estimation of the rate parameters for different posets and sampling time distributions. The superiority of the
OT-CBN model is due to the fact that firstly this model takes into account not only observed genotypes but
also observed sampling times for parameter estimation, and secondly as opposed to the CT-CBN model,
the OT-CBN model makes no assumptions on the distribution of the sampling time and its independence
of the mutational process.

4. HIV GENETIC DATA

In this section, we analyze five datasets obtained from the SHCS database (Schoeni-Affolter and others,
2010) (Table 7 of supplementary material available at Biostatistics online). We want to model the accumu-
lation of resistance mutations in the reverse transcriptase gene of the HIV viral genome under monotherapy
with zidovudine (ZDV) or combination therapy with zidovudine plus lamivudine (ZDV+3TC) or any ther-
apy consisting of ZDV (denoted by ZDV+∗). Resistance mutations for each therapy are selected from
Johnson and others (2013) and reported in Table 7 of supplementary material available at Biostatistics
online. The mutation 67N, for instance, indicates amino acid asparagine (N) has been observed at position
67 of the reverse transcriptase gene of the HIV viral genome. The datasets ZDV-fl and ZDV+3TC-fl only
contain genotypes for first-line (fl) therapies, while the other datasets consist of genotypes for both first-
line and salvage therapies. For all datasets, the sampling time of each individual genotype is observed.
By applying the one-sample Kolmogorov–Smirnov test, we found that sampling time distributions deviate
significantly from the exponential distribution, for all datasets. Figure 5 of supplementary material avail-
able at Biostatistics online shows to what extent each dataset deviates from the exponential assumption.
Hence, one of the assumptions of the CT-CBN model is violated and we expect the OT-CBN model to be
more accurate than the CT-CBN model for these datasets.

In real-world applications, the true dependency structure among mutations, i.e. the poset, is not usually
known and one has to learn it from observed data. It has been shown that the ML poset is the largest
poset that is compatible with all observed genotypes (Beerenwinkel and Sullivant, 2009). However, in
practice, real-world datasets are not perfect and observations are subject to noise. Hence, since the ML
poset only consists of relations that are compatible with all observations, the ML poset will be very sparse
for most real-world datasets. The problem of noisy genotypes was addressed in Beerenwinkel and others
(2007, 2011) and Beerenwinkel and Sullivant (2009). In this paper, we follow the approach outlined in
Beerenwinkel and Sullivant (2009). Let Pε be the maximal poset which consists of all relations which
are violated by at most a fraction ε of all genotypes. The rate parameters λ of the poset Pε are estimated
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(a) (b)

(c) (d)

Fig. 4. The ML posets learned from the datasets explained in Table 7 of supplementary material available at Biostatistics
online. The poset (a) is the ML estimate obtained from both datasets ZDV-fl or ZDV-all. The poset (b)–(d) were learned
from the datasets ZDV+∗-all, ZDV+3TC-fl, and ZDV+3TC-all, respectively. These posets explain from 78% to 95%
of the input datasets (Table 7 of supplementary material available at Biostatistics online).

only by using the compatible genotypes. The incompatible genotypes are assumed to be generated with
uniform probability qε = 1/(2n − |J (Pε)|). Then, the probability that a random vector T , defined in (2.1),
is compatible with the extended model Pε is defined as

Prob{(T, ts) � Qg | λ, α} =
{

αProb{(T, ts) � Qg | λ} if Qg refines Pε,

(1 − α)qε otherwise,

where the parameter α denotes the fraction of genotypes compatible with the poset Pε .
In Figure 3, the CT-CBN and OT-CBN estimates for different values of α are compared for the dataset

ZDV+3TC-all. For all values of α, the likelihood of the OT-CBN model is larger than the likelihood of the
CT-CBN model. The ML poset of the OT-CBN model explains 82% of the observations (Table 7 of sup-
plementary material available at Biostatistics online, Figure 4(d)). Similarly, for all other datasets except
ZDV+3TC-fl, the OT-CBN model outperforms the CT-CBN model (Figure 4 of supplementary material
available at Biostatistics online). For ZDV+3TC-fl (Figure 4(c) of supplementary material available at
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Table 1. Comparison of the RMSE of the OT-CBN and CT-CBN models computed on
the test data of each cross-validation fold for the HIV datasets

Dataset �RMSE(t̂s ) p-value

ZDV-all 0.034 0.0020
ZDV-fl 0.035 0.0039
ZDV+3TC-all 0.057 0.0020
ZDV+3TC-fl 0.040 0.0273
ZDV+∗-all 0.055 0.0020

The relative RMSE difference is defined as �RMSE(t̂s ) = {RMSE(t̂s
CT

) − RMSE(t̂s
OT

)}/RMSE(t̂s
CT

).
The p-values are computed from Wilcoxon signed ranked tests of the RMSE of the OT-CBN model versus
the CT-CBN model, based on ten-fold cross-validation.

Biostatistics online), this result might be due to the fact that this dataset has the smallest number of obser-
vations and hence least statistical power. All ML posets learned from the different datasets consist of two
main components (Figure 4). The first component consists of the mutations 41L, 210W, and 215Y and
the second one consists of the mutations 67N, 70R, and 219Q. This is in agreement with previous studies
where two distinct evolutionary routes, called the 215-41 pathway and the 70-219 pathway, were suggested
for the development of resistance to HIV under ZDV (Hanna and others, 2000; Beerenwinkel and others,
2005a).

In addition to comparing the likelihoods of two models on the HIV datasets, we also compared the
accuracy of sampling time estimation for a given genotype for both models. For real-world datasets, the
true rate parameters λ are not known and it is not possible to assess directly the accuracy of the estimated
rate parameters. However, we can compare two models by comparing the observed sampling times and the
estimated sampling times. The estimation of sampling times depends on the rate parameters and the poset.
We can compute the ML estimates of the rate parameters and the poset using the training data of each
cross-validation fold. Then, the sampling time for a given genotype is estimated by the expected sampling
time E(Ts | g, P, λ). In order to compute this expectation, we apply Bayes rule to obtain the posterior
distribution of the sampling time,

P(Ts = ts | g, P, λ) = P(g | Ts = ts, P, λ)P(Ts = ts | P, λ)∫ ∞
t=0 P(g | Ts = t, P, λ)P(Ts = t | P, λ) dt

,

where the probability P(g | Ts = ts, P, λ) is computed by Theorem 2.3 (alternatively denoted by
Prob{(T, ts) � Qg} in the theorem) and P(Ts = ts | P, λ) is a prior distribution for sampling times. In the
cross-validation setting, we approximated the prior distribution by a non-parametric kernel density esti-
mation of training data of each cross-validation fold. The relative root-mean-square errors (RMSE) differ-
ence �RMSE(t̂s ) = {RMSE(t̂s

CT
) − RMSE(t̂s

OT
)}/RMSE(t̂s

CT
) and the p-values obtained from Wilcoxon

signed rank sum tests of the RMSE of the OT-CBN model versus the CT-CBN model are reported for all
the considered datasets in Table 1. For all the HIV datasets, RMSE of the estimated sampling times of the
OT-CBN model are significantly smaller than those of the CT-CBN model.

5. CONCLUSIONS

Timed CBNs have been used to analyze the timeline for the accumulation of mutations under partial tem-
poral orders among mutations. In these models, mutations are assumed to happen after exponentially dis-
tributed waiting times. The waiting process for a mutation starts after all its predecessor mutations have
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already occurred. In previous work, Beerenwinkel and Sullivant (2009) assumed that the sampling time
for a given genotype is an unknown exponentially distributed random variable and is independent of the
mutational process. Here, in the OT-CBN model, the sampling times are observed and no assumptions on
the distribution of the sampling times and its dependency on the mutational process have been made. We
developed an EM algorithm for estimation of the evolutionary rates for a given poset based on observed
genotypes and corresponding sampling times. We compared the OT-CBN to the CT-CBN model on sim-
ulated data as well as real-world data from multiple genotypic HIV drug resistance datasets. In the sim-
ulation study, we investigated different sampling time distributions. The OT-CBN model is accurate in
recovering true parameters for different distributions of sampling times while the CT-CBN was unable to
recover true parameters for distributions that are non-exponential or dependent on the mutational process.
For the HIV datasets, the OT-CBN was better than the CT-CBN model in terms of likelihood and sampling
time estimation. We conclude that the superiority of the OT-CBN model is the result of less restrictive
assumptions of the model as well as taking into account the individual sampling time points for parameter
estimation.

We provide an analytical expression for the expected sampling time of a genotype, E(Ts | g). This quan-
tity is closely related to the genetic progression score (GPS), defined as the expected waiting time of the
genotype, E(maxe∈g Te) (Rahnenführer and others, 2005). The GPS was previously computed from simu-
lations for a large number of samples obtained from mixture models of timed oncogenetic trees, and it was
shown to be a medically relevant prognostic factor for glioblastoma and prostate cancer (Rahnenführer and
others, 2005). Like the GPS, we expect the expected sampling time of the genotype to be an informative
predictor of HIV treatment outcome. Since the observation time is a result of treatment failure, it may
even be a better predictor of treatment success. Another interesting quantity, computed in this paper in
Theorem 2.3, is the probability of observing a genotype at a certain sampling time ts , P(g | Ts = ts, P, λ).
The probabilities of different genotypes over time (see Example 2.4 and Figure 2) are of particular inter-
est for clinicians. This additional information enables clinicians to get more insights about the underlying
genotypic information of a patient without performing an actual genotypic resistance testing, which can
be helpful in HIV therapy selection particularly in resource-limited countries where genotypic resistance
testing may not be available (Prosperi and others, 2010; Revell and others, 2013).

The OT-CBN model has a number of limitations. Firstly, the use of cross-sectional data for the esti-
mation of the evolutionary rates relies on the assumption of independent observations. The estimation of
the rates can be improved by using longitudinal genotypic data where each patient might have more than
one genotype at different time points. Further research is required to develop a new CBN model based on
longitudinal data (see Beerenwinkel and Drton, 2007). Secondly, in the HIV application, we found that
sampling times cannot be explained solely by the patient’s genotype. In other words, we found that the
observed sampling times for each genotype are highly variable. This suggests other relevant information
of patients such as demographic variables and clinical outcomes have to be taken into account to explain
this variability. Further research is needed to fit the CBN model not only based on the observed genotypes
and sampling times but also based on other covariates specific to a given patient. This means the evolu-
tionary rates and possibly even the network structure of the CBN model would become patient-specific.
Hence, the extended CBN model would be able to describe the dynamics and dependencies of accumulat-
ing mutations for each individual patient. This extension could be particularly useful for therapy selection
of HIV or in the case of cancer patients where treatment choices are highly personalized. Finally, the OT-
CBN model does not work when some of the sampling times are missing. However, there are several ways
to overcome this issue. One way is to perform imputation and replace the missing sampling times with
sampling times of similar genotypes. A more sophisticated method would be to introduce a more general
likelihood function for this case, i.e.

∏
(g,ts )∈O Pr{(T, ts) � Qg}

∏
g∈M Pr{T � Qg} where O is the set of

observed genotype-sampling time pairs and M is the set of genotypes for which the corresponding sam-
pling times are missing. The first product is the observed likelihood of the OT-CBN model and the second
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one is the observed likelihood of the CT-CBN model. Hence, a combined CT-CBN and OT-CBN approach
is possible to overcome missing sampling time issues.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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BEERENWINKEL, N.,RAHNENFÜHRER, J.,KAISER, R.,HOFFMANN, D., SELBIG, J. AND LENGAUER, T. (2005). Mtreemix:
a software package for learning and using mixture models of mutagenetic trees. Bioinformatics 21(9), 2106–2107.
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H., YERLY, S. AND FRANCIOLI, P. (2010). Cohort profile: the Swiss HIV Cohort Study. International Journal of
Epidemiology 39(5), 1179–1189.
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