53 research outputs found

    Friction in metal-on-metal total disc arthroplasty: effect of ball radius

    Get PDF
    Total Disc Arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of prosthetic discs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of ball radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was observed that implants with a smaller ball radius showed lower friction and showed boundary and mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to reduce wear and implant loosening

    Bayesian networks for engineering design decision support.

    Get PDF

    Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Articular cartilage is a viscoelastic material, but its exact behaviour under the full range of physiological loading frequencies is unknown. The objective of this study was to measure the viscoelastic properties of bovine articular cartilage at loading frequencies of up to 92 Hz.</p> <p>Methods</p> <p>Intact tibial plateau cartilage, attached to subchondral bone, was investigated by dynamic mechanical analysis (DMA). A sinusoidally varying compressive force of between 16 N and 36 N, at frequencies from 1 Hz to 92 Hz, was applied to the cartilage surface by a flat indenter. The storage modulus, loss modulus and phase angle (between the applied force and the deformation induced) were determined.</p> <p>Results</p> <p>The storage modulus, <it>E'</it>, increased with increasing frequency, but at higher frequencies it tended towards a constant value. Its dependence on frequency, <it>f</it>, could be represented by, <it>E' </it>= <it>Alog</it><sub><it>e </it></sub>(<it>f</it>) + <it>B </it>where <it>A </it>= 2.5 Β± 0.6 MPa and <it>B </it>= 50.1 Β± 12.5 MPa (mean Β± standard error). The values of the loss modulus (4.8 Β± 1.0 MPa mean Β± standard deviation) were much less than the values of storage modulus and showed no dependence on frequency. The phase angle was found to be non-zero for all frequencies tested (4.9 Β± 0.6Β°).</p> <p>Conclusion</p> <p>Articular cartilage is viscoelastic throughout the full range of frequencies investigated. The behaviour has implications for mechanical damage to articular cartilage and the onset of osteoarthritis. Storage modulus increases with frequency, until the plateau region is reached, and has a higher value than loss modulus. Furthermore, loss modulus does not increase with loading frequency. This means that more energy is stored by the tissue than is dissipated and that this effect is greater at higher frequencies. The main mechanism for this excess energy to be dissipated is by the formation of cracks.</p
    • …
    corecore