7,634 research outputs found

    Prodeedings: Conference on the Responsibility of the Physician in a Changing Society

    Get PDF

    Control/structure interaction design methodology

    Get PDF
    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies

    FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination.

    Get PDF
    BackgroundFTY720 (fingolimod) is the first oral drug approved by the Food and Drug Administration for treatment of patients with the relapsing-remitting form of the human demyelinating disease multiple sclerosis. Evidence suggests that the therapeutic benefit of FTY720 occurs by preventing the egress of lymphocytes from lymph nodes thereby inhibiting the infiltration of disease-causing lymphocytes into the central nervous system (CNS). We hypothesized that FTY720 treatment would affect lymphocyte migration to the CNS and influence disease severity in a mouse model of viral-induced neurologic disease.MethodsMice were infected intracranially with the neurotropic JHM strain of mouse hepatitis virus. Infected animals were treated with increasing doses (1, 3 and 10 mg/kg) of FTY720 and morbidity and mortality recorded. Infiltration of inflammatory virus-specific T cells (tetramer staining) into the CNS of FTY720-treated mice was determined using flow cytometry. The effects of FTY720 treatment on virus-specific T cell proliferation, cytokine production and cytolytic activity were also determined. The severity of neuroinflammation and demyelination in FTY720-treated mice was examined by flow cytometry and histopathologically, respectively, in the spinal cords of the mice.ResultsAdministration of FTY720 to JHMV-infected mice resulted in increased clinical disease severity and mortality. These results correlated with impaired ability to control viral replication (P < 0.05) within the CNS at days 7 and 14 post-infection, which was associated with diminished accumulation of virus-specific CD4+ and CD8+ T cells (P < 0.05) into the CNS. Reduced neuroinflammation in FTY720-treated mice correlated with increased retention of T lymphocytes within draining cervical lymph nodes (P < 0.05). Treatment with FTY720 did not affect virus-specific T cell proliferation, expression of IFN-γ, TNF-α or cytolytic activity. FTY720-treated mice exhibited a reduction in the severity of demyelination associated with dampened neuroinflammation.ConclusionThese findings indicate that FTY720 mutes effective anti-viral immune responses through impacting migration and accumulation of virus-specific T cells within the CNS during acute viral-induced encephalomyelitis. FTY720 treatment reduces the severity of neuroinflammatory-mediated demyelination by restricting the access of disease-causing lymphocytes into the CNS but is not associated with viral recrudescence in this model

    Planning for the semiconductor manufacturer of the future

    Get PDF
    Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described

    Semantic Modeling for Group Formation

    No full text
    Group formation has always been a subject of interest in collaborative learning research. As it is concerned with assigning learners to the groups that maximize their benefits, computer-supported group formation can be viewed in this context as an active personalization for the individual as an entity within the group. While applying this personalization to all students in the class can cause conflicts due to the differences of needs and interests between the individuals, negotiating the allocations to groups to reach consensus can be a very challenging task. The automated process of grouping students while preserving the individual’s personalization needs to be supported by an appropriate learner model. In this paper, we propose a semantic learner model based on the Friend of Friend (FOAF) ontology, a vocabulary for mapping social networks. We discuss the model as we analyse the different types of groups and the learners’ features that need to be modeled for each of these types

    Comments on Deeds and Rules in Quaker Ethics

    Full text link

    The 27–year decline of coral cover on the Great Barrier Reef and its causes

    Get PDF
    This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef.The world’s coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world’s most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985–2012), we show amajor decline in coral cover from 28.0%to 13.8% (0.53%y−1), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%,and 10%of the respective estimated losses,amounting to 3.38% y−1 mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85%y−1, demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y−1, despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improvingwater quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase. Image: Wibble_Roisin / flick
    • …
    corecore