1,379 research outputs found

    Precision and Work Fluctuations in Gaussian Battery Charging

    Full text link
    One of the most fundamental tasks in quantum thermodynamics is extracting energy from one system and subsequently storing this energy in an appropriate battery. Both of these steps, work extraction and charging, can be viewed as cyclic Hamiltonian processes acting on individual quantum systems. Interestingly, so-called passive states exist, whose energy cannot be lowered by unitary operations, but it is safe to assume that the energy of any not fully charged battery may be increased unitarily. However, unitaries raising the average energy by the same amount may differ in qualities such as their precision, fluctuations, and charging power. Moreover, some unitaries may be extremely difficult to realize in practice. It is hence of crucial importance to understand the qualities that can be expected from practically implementable transformations. Here, we consider the limitations on charging batteries when restricting to the feasibly realizable family of Gaussian unitaries. We derive optimal protocols for general unitary operations as well as for the restriction to easier implementable Gaussian unitaries. We find that practical Gaussian battery charging, while performing significantly less well than is possible in principle, still offers asymptotically vanishing relative charge variances and fluctuations.Comment: 14+8 pages, 8 figures, accepted for publication in Quantu

    Layered Quantum Key Distribution

    Get PDF
    We introduce a family of QKD protocols for distributing shared random keys within a network of nn users. The advantage of these protocols is that any possible key structure needed within the network, including broadcast keys shared among subsets of users, can be implemented by using a particular multi-partite high-dimensional quantum state. This approach is more efficient in the number of quantum channel uses than conventional quantum key distribution using bipartite links. Additionally, multi-partite high-dimensional quantum states are becoming readily available in quantum photonic labs, making the proposed protocols implementable using current technology.Comment: 11 pages, 5 figures. In version 2 we extended section 4 about the dimension-rate trade-off and corrected minor error

    Quantifying high dimensional entanglement with two mutually unbiased bases

    Full text link
    We derive a framework for quantifying entanglement in multipartite and high dimensional systems using only correlations in two unbiased bases. We furthermore develop such bounds in cases where the second basis is not characterized beyond being unbiased, thus enabling entanglement quantification with minimal assumptions. Furthermore, we show that it is feasible to experimentally implement our method with readily available equipment and even conservative estimates of physical parameters.Comment: 17 pages, 1 figur
    • …
    corecore