13 research outputs found

    A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020

    No full text
    (1) Background: Fine roots (≤2 mm in diameter) play a critical role in forest ecosystem ecological processes and has been widely identified as a major research topic. This study aimed to synthesize the global literature based on the Web of Science Core Collection scientific database from 1992 to 2020 and summarize the research trends and prospects on research of fine roots in forest ecosystems. A quantitative bibliometric analysis was presented with information related to authors, countries, institutions, journals, top cited publications, research hotspots, trends, and prospects. (2) Results: The results showed that the amount of publications has increased exponentially. USA, China, and Germany were the most productive countries. Chinese Academy of Science was the most productive institution on fine roots research and also has a key position in both domestic and international cooperation networks. Leuschner C and Hertel D were the most productive authors. Six core journals were confirmed from 471 journals based on Bradford’s law. The distribution of the frequency of authors and the number of their publications were fitted with Lotka’s Law. Author collaboration network was mainly limited in the same countries/territories and institutions. Keywords analysis indicates that the hotspots are biomass, decomposition, and respiration of fine roots, especially under climate change. (3) Conclusion: Our results provide a better understanding of global characteristics and trends of fine roots that have emerged in this field, which could offer reference for future research

    A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020

    No full text
    (1) Background: Fine roots (≤2 mm in diameter) play a critical role in forest ecosystem ecological processes and has been widely identified as a major research topic. This study aimed to synthesize the global literature based on the Web of Science Core Collection scientific database from 1992 to 2020 and summarize the research trends and prospects on research of fine roots in forest ecosystems. A quantitative bibliometric analysis was presented with information related to authors, countries, institutions, journals, top cited publications, research hotspots, trends, and prospects. (2) Results: The results showed that the amount of publications has increased exponentially. USA, China, and Germany were the most productive countries. Chinese Academy of Science was the most productive institution on fine roots research and also has a key position in both domestic and international cooperation networks. Leuschner C and Hertel D were the most productive authors. Six core journals were confirmed from 471 journals based on Bradford’s law. The distribution of the frequency of authors and the number of their publications were fitted with Lotka’s Law. Author collaboration network was mainly limited in the same countries/territories and institutions. Keywords analysis indicates that the hotspots are biomass, decomposition, and respiration of fine roots, especially under climate change. (3) Conclusion: Our results provide a better understanding of global characteristics and trends of fine roots that have emerged in this field, which could offer reference for future research

    Heuristic Algorithms for Primitive Traversal Acceleration in Tile-Based Rasterization

    No full text
    Abstract — This paper addresses a series of hardware algorithms to reduce the computational overhead to locate the first rasterization tile position inside the primitive to be rasterized when the tile-based rasterization adopts the classical primitive traversal algorithm. These algorithms can be applied sequentially in a simple-to-complex order for searching a suitable starting tile rasterization position inside the primitive as follows: check if any of the vertices is in the tile, check if the triangle center of gravity (COG) is in the tile, recursive tile quadrant division based on COG attractors, and partial tile boundary scan. The algorithms were modeled in SystemC at the RT-level and integrated in a full-fledged OpenGL-compliant hardware rasterizer SystemC model. Simulation results on a benchmark suite consisting of 30 OpenGL applications have indicated that the throughput penalty is reduced to about 7 % at the expense of about 10 % increase in the hardware area when the entire OpenGL-compliant hardware rasterizer is synthesized in a commercial 0.18µm process technology. Keywords — 3D graphics architectures; tile-based rasterization; embedded systems; digital logic design I

    High-Fidelity 3D Face Generation from Natural Language Descriptions

    Full text link
    Synthesizing high-quality 3D face models from natural language descriptions is very valuable for many applications, including avatar creation, virtual reality, and telepresence. However, little research ever tapped into this task. We argue the major obstacle lies in 1) the lack of high-quality 3D face data with descriptive text annotation, and 2) the complex mapping relationship between descriptive language space and shape/appearance space. To solve these problems, we build Describe3D dataset, the first large-scale dataset with fine-grained text descriptions for text-to-3D face generation task. Then we propose a two-stage framework to first generate a 3D face that matches the concrete descriptions, then optimize the parameters in the 3D shape and texture space with abstract description to refine the 3D face model. Extensive experimental results show that our method can produce a faithful 3D face that conforms to the input descriptions with higher accuracy and quality than previous methods. The code and Describe3D dataset are released at https://github.com/zhuhao-nju/describe3d .Comment: Accepted to CVPR 202

    A review of diamond synthesis, modification technology, and cutting tool application in ultra-precision machining

    No full text
    Diamond is the hardest natural material, boasting a variety of remarkable properties. However, due to increased demand and technological advancements, natural diamond has struggled to meet the specialized requirements of various industries. This paper offers a comprehensively critical review of diamond synthesis, modification, and cutting tool in ultra-precision machining based on the remarkable properties of diamond. Firstly, the paper outlines the outstanding properties of diamonds and breakthroughs in the original performance achieved by doping elements. Secondly, the paper focuses on recent progress in high temperature high pressure (HTHP), specifically those involving solvent-catalysts and element catalysts. The advancements in chemical vapor deposition (CVD) for diamond synthesis, emphasizing improvements in growth rate and quality, are thoroughly reviewed and summarized. Thirdly, the mechanisms of boron doping and interface modification are analyzed. Finally, the paper presents the fabrication of diamond tools and their wear mechanisms during the machining of difficult-to-cut materials and explores assisted-machining methods. Notably, the future direction of diamond synthesis will emphasize producing large-sized diamond with high growth rates, as well as doping and the preparation of diamond/metal composite materials. This critical review provides a comprehensive review of diamond preparation, modification, and cutting tools in ultra-precision machining. It serves as a valuable reference for relevant research endeavors

    Polypropylene Glycol-Polyoxytetramethylene Glycol Multiblock Copolymers with High Molecular Weight: Synthesis, Characterization, and Silanization

    No full text
    The high crystallization at room temperature and high cost of polyoxytetramethylene glycol (PTMG) have become obstacles to its application. To overcome these problems, a segment of PTMG can be incorporated into a block copolymer. In this work, polypropylene (PPO) glycol-polyoxytetramethylene (PPO-PTMG) multiblock copolymers were designed and synthesized through a chain extension between hydroxyl (OH)-terminated PPO and PTMG oligomers. The chain extenders, feed ratios of the catalyst/chain extender/OH groups, reaction temperature, and time were optimized several times to obtain a PPO-PTMG with low crystallization and high molecular weight. Multiblock copolymers with low crystallization and high average molecular weight (Mn = 1.0–1.4 × 104 Dalton) were harvested using m-phthaloyl chloride as the chain extender. The OH-terminated PPO-PTMG multiblock copolymer with high Mn and a functionality near two was further siliconized by 3-isocyanatopropyltrimethoxysilane to synthesize a novel silyl-terminated polyether. This polyether has an appropriate vulcanizing property and potential applications in sealants/adhesive fields

    The changing epidemiology of dengue in China, 1990-2014: a descriptive analysis of 25 years of nationwide surveillance data

    Get PDF
    BACKGROUND: Dengue has been a notifiable disease in China since 1 September 1989. Cases have been reported each year during the past 25 years of dramatic socio-economic changes in China, and reached a historical high in 2014. This study describes the changing epidemiology of dengue in China during this period, to identify high-risk areas and seasons and to inform dengue prevention and control activities.METHODS: We describe the incidence and distribution of dengue in mainland China using notifiable surveillance data from 1990-2014, which includes classification of imported and indigenous cases from 2005-2014.RESULTS: From 1990-2014, 69,321 cases of dengue including 11 deaths were reported in mainland China, equating to 2.2 cases per one million residents. The highest number was recorded in 2014 (47,056 cases). The number of provinces affected has increased, from a median of three provinces per year (range: 1 to 5 provinces) during 1990-2000 to a median of 14.5 provinces per year (range: 5 to 26 provinces) during 2001-2014. During 2005-2014, imported cases were reported almost every month and 28 provinces (90.3%) were affected. However, 99.8% of indigenous cases occurred between July and November. The regions reporting indigenous cases have expanded from the coastal provinces of southern China and provinces adjacent to Southeast Asia to the central part of China. Dengue virus serotypes 1, 2, 3, and 4 were all detected from 2009-2014.CONCLUSIONS: In China, the area affected by dengue has expanded since 2000 and the incidence has increased steadily since 2012, for both imported and indigenous dengue. Surveillance and control strategies should be adjusted to account for these changes, and further research should explore the drivers of these trends. Please see related article: http://dx.doi.org/10.1186/s12916-015-0345-0

    GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer

    No full text
    Practice of tumor-targeted suicide gene therapy is hampered by unsafe and low efficient delivery of plasmid DNA (pDNA). Using HIV-Tat-derived peptide (Tat) to non-covalently form Tat/pDNA complexes advances the delivery performance. However, this innovative approach is still limited by intracellular delivery efficiency and cell-cycle status. In this study, Tat/pDNA complexes were further condensed into smaller, nontoxic nanoparticles by Ca2+ addition. Formulated Tat/pDNA-Ca2+ nanoparticles mainly use macropinocytosis for intercellular delivery, and their macropinocytic uptake was persisted in mitosis (M-) phase and highly activated in DNA synthesis (S-) phase of cell-cycle. Over-expression or phosphorylation of a mitochondrial chaperone, 75-kDa glucose-regulated protein (GRP75), promoted monopolar spindle kinase 1 (MPS1)-controlled centrosome duplication and cell-cycle progress, but also driven cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles. Further in vivo molecular imaging based on DF (Fluc-eGFP)-TF (RFP-Rluc-HSV-ttk) system showed that Tat/pDNA-Ca2+ nanoparticles exhibited highly suicide gene therapy efficiency in mouse model xenografted with human ovarian cancer. Furthermore, arresting cell-cycle at S-phase markedly enhanced delivery performance of Tat/pDNA-Ca2+ nanoparticles, whereas targeting GRP75 reduced their macropinocytic delivery. More importantly, in vivo targeting GRP75 combined with cell-cycle or macropinocytosis inhibitors exhibited distinct suicide gene therapy efficiency. In summary, our data highlight that mitochondrial chaperone GRP75 moonlights as a biphasic driver underlying cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles in ovarian cancer
    corecore