26 research outputs found

    Response of the Downstream Braided Channel to Zhikong Reservoir on Lhasa River

    Get PDF
    Lhasa River basin is situated in the southern part of the Qinghai-Tibet Plateau, which is the most important region of economic and social development in Tibet. In order to efficiently utilize water resources in the basin and ease the shortage of regional electric power supply, Zhikong Reservoir was built in the upstream reach of the Lhasa River in 2006. Impoundment of this reservoir evidently affected the morphology and stability of the downstream braided channel below the dam. Yet, little is known about the complex responses of the downstream braided channel to the Zhikong Dam. Landsat images in the 2000–2016 period, together with daily discharges and field observations in the 2017–2018 period, were used to investigate the morphological response of the braided channel to the Zhikong Dam. The downstream Lhasa River below the Zhikong Dam was divided into four reaches (i.e., RS1, RS2, RS3 and RS4) based on the confluence of three downstream tributaries. Results showed that the number and area of central bars in the braided reach closest to Zhikong Dam (RS1) were increased because of main channel incision and water level drop. This increasing trend attenuated along the downstream channel of this reach. Braiding number index of multithread channels in RS1 obviously increased by 3 in one section and reduced by 2 in two sections, while changed in all sections randomly with no pronounced trend along the RS2 to RS3 and RS4 reaches. The average bar area in two focus reaches, RS1_B1 and RS2_B2, 6.0 km and 36.8 km far away to the Zhikong Dam, respectively, followed opposite trends with the former increasing and the later reducing. Furthermore, the mean dissection, landscape dissection and fragmentation shape indices in RS1, showed an increasing trend from 2001 to 2016, indicating the shape of irregular central bars varied greatly because clean water release of Zhikong Dam eroded the downstream braided channel

    Solving Bilevel Multiobjective Programming Problem by Elite Quantum Behaved Particle Swarm Optimization

    Get PDF
    An elite quantum behaved particle swarm optimization (EQPSO) algorithm is proposed, in which an elite strategy is exerted for the global best particle to prevent premature convergence of the swarm. The EQPSO algorithm is employed for solving bilevel multiobjective programming problem (BLMPP) in this study, which has never been reported in other literatures. Finally, we use eight different test problems to measure and evaluate the proposed algorithm, including low dimension and high dimension BLMPPs, as well as attempt to solve the BLMPPs whose theoretical Pareto optimal front is not known. The experimental results show that the proposed algorithm is a feasible and efficient method for solving BLMPPs

    Covert communication in relay and RIS networks

    Get PDF
    Covert communication aims to prevent the warden from detecting the presence of communications, i.e. with a negligible detection probability. When the distance between the transmitter and the legitimate receiver is large, large transmission power is needed, which in turn increases the detection probability. Relay is an effective technique to tackle this problem, and various relaying strategies have been proposed for long-distance covert communication in these years. In this article, we first offer a tutorial on the relaying strategies utilized in covert transmission. With the emergence of reflecting intelligent surface and its application in covert communications, we propose a hybrid relay-reflecting intelligent surface (HR-RIS)-assisted strategy to further enhance the performance of covert communications, which simultaneously improves the signal strength received at the legitimate receiver and degrades that at the warden relying on optimizing both the phase and the amplitude of the HR-RIS elements. The numerical results show that the proposed HR-RIS-assisted strategy significantly outperforms the conventional RIS-aided strategy in terms of covert rate

    A Two-Step Approach for Analytical Optimal Hedging with Two Triggers

    No full text
    Hedging is widely used to mitigate severe water shortages in the operation of reservoirs during droughts. Rationing is usually instituted with one hedging policy, which is based only on one trigger, i.e., initial storage level or current water availability. It may perform poorly in balancing the benefits of a release during the current period versus those of carryover storage during future droughts. This study proposes a novel hedging rule to improve the efficiency of a reservoir operated to supply water, in which, based on two triggers, hedging is initiated with three different hedging sub-rules through a two-step approach. In the first step, the sub-rule is triggered based on the relationship between the initial reservoir storage level and the level of the target rule curve or the firm rule curve at the end of the current period. This step is mainly concerned with increasing the water level or not in the current period. Hedging is then triggered under the sub-rule based on current water availability in the second step, in which the trigger implicitly considers both initial and ending reservoir storage levels in the current period. Moreover, the amount of hedging is analytically derived based on the Karush–Kuhn–Tucker (KKT) conditions. In addition, the hedging parameters are optimized using the improved particle swarm optimization (IPSO) algorithm coupled with a rule-based simulation. A single water-supply reservoir located in Hubei Province in central China is selected as a case study. The operation results show that the proposed rule is reasonable and significantly improves the reservoir operation performance for both long-term and critical periods relative to other operation policies, such as the standard operating policy (SOP) and the most commonly used hedging rules

    Simulating Reservoir Induced Lhasa Streamflow Variability Using ArcSWAT

    No full text
    Lhasa River Basin being the socio-economic hotspot of Qinghai-Tibetan Plateau is experiencing an increased hydropower capacity in the form of damming and reservoir construction. The Pangduo hydropower station, commenced in 2013, is one of these developments. Lhasa River discharge is analyzed for spatial variability under the reservoir operation at Pondo and Lhasa gauging station. The Mann–Kendall Trend analysis reveals an increased precipitation and a decreased Lhasa River discharge trend upstream and downstream the reservoir. However, the discharge received at Lhasa gauging station is experiencing a greater decline revealed by Sen’s slope estimator. Soil and Water Assessment Tool (SWAT) modelling of the Lhasa River discharge for both the hydrometric stations from 2008–2016 reveals better simulation results for Pondo hydrometric station in terms of R2, NSE and PBIAS values. The modelling results for Pondo station correspond comparatively well to the reservoir operation procedures including water level and inflow despite of data availability constraint. However, the importance of non-simulated processes (e.g., groundwater abstractions) to the accurate prediction of the Lhasa flow regime particularly at the downstream flow gauge is recommended. The study can prove beneficial for local water distribution measures in Lhasa River Basin

    A penalty function method for solving inverse optimal value problem

    Get PDF
    AbstractIn order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem

    Impending Hydrological Regime of Lhasa River as Subjected to Hydraulic Interventions—A SWAT Model Manifestation

    No full text
    The damming of rivers has altered their hydrological regimes. The current study evaluated the impacts of major hydrological interventions of the Zhikong and Pangduo hydropower dams on the Lhasa River, which was exposed in the form of break and change points during the double-mass curve analysis. The coefficient of variability (CV) for the hydro-meteorological variables revealed an enhanced climate change phenomena in the Lhasa River Basin (LRB), where the Lhasa River (LR) discharge varied at a stupendous magnitude from 2000 to 2016. The Mann–Kendall trend and Sen’s slope estimator supported aggravated hydro-meteorological changes in LRB, as the rainfall and LR discharge were found to have been significantly decreasing while temperature was increasing from 2000 to 2016. The Sen’s slope had a largest decrease for LR discharge in relation to the rainfall and temperature, revealing that along with climatic phenomena, additional phenomena are controlling the hydrological regime of the LR. Reservoir functioning in the LR is altering the LR discharge. The Soil and Water Assessment Tool (SWAT) modeling of LR discharge under the reservoir’s influence performed well in terms of coefficient of determination (R2), Nash–Sutcliffe coefficient (NSE), and percent bias (PBIAS). Thus, simulation-based LR discharge could substitute observed LR discharge to help with hydrological data scarcity stress in the LRB. The simulated–observed approach was used to predict future LR discharge for the time span of 2017–2025 using a seasonal AutoRegressive Integrated Moving Average (ARIMA) model. The predicted simulation-based and observation-based discharge were closely correlated and found to decrease from 2017 to 2025. This calls for an efficient water resource planning and management policy for the area. The findings of this study can be applied in similar catchments

    An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem

    No full text
    An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm

    SPQE: Structure-and-Perception-Based Quality Evaluation for Image Super-Resolution

    Full text link
    The image Super-Resolution (SR) technique has greatly improved the visual quality of images by enhancing their resolutions. It also calls for an efficient SR Image Quality Assessment (SR-IQA) to evaluate those algorithms or their generated images. In this paper, we focus on the SR-IQA under deep learning and propose a Structure-and-Perception-based Quality Evaluation (SPQE). In emerging deep-learning-based SR, a generated high-quality, visually pleasing image may have different structures from its corresponding low-quality image. In such case, how to balance the quality scores between no-reference perceptual quality and referenced structural similarity is a critical issue. To help ease this problem, we give a theoretical analysis on this tradeoff and further calculate adaptive weights for the two types of quality scores. We also propose two deep-learning-based regressors to model the no-reference and referenced scores. By combining the quality scores and their weights, we propose a unified SPQE metric for SR-IQA. Experimental results demonstrate that the proposed method outperforms the state-of-the-arts in different datasets
    corecore