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Abstract Covert communication aims to prevent the warden from detecting the presence
of communications, i.e. with a negligible detection probability. When the distance between
the transmitter and the legitimate receiver is large, large transmission power is needed,
which in turn increases the detection probability. Relay is an effective technique to tackle
this problem, and various relaying strategies have been proposed for long-distance covert
communication in these years. In this article, we first offer a tutorial on the relaying strategies
utilized in covert transmission. With the emergence of reflecting intelligent surface and its
application in covert communications, we propose a hybrid relay-reflecting intelligent surface
(HR-RIS)-assisted strategy to further enhance the performance of covert communications,
which simultaneously improves the signal strength received at the legitimate receiver and
degrades that at the warden relying on optimizing both the phase and the amplitude of the
HR-RIS elements. The numerical results show that the proposed HR-RIS-assisted strategy
significantly outperforms the conventional RIS-aided strategy in terms of covert rate.
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1 Introduction

Security and privacy are two critical issues in current communication systems. The development of clas-
sical cryptography, information-theoretic security, and quantum cryptography have greatly improved
the security levels of data transmission. Cryptography presents the adversary with a problem that it is
assumed not to be able to solve because of computational constraints, while information-theoretic security
presents the adversary with a signal from which no information can be extracted. They addressed many
security issues by protecting the content of the message, they cannot mitigate the threat of communi-
cation detection. Adversary/warden detects a potential data transmission, it may disturb it. To tackle
this issue, covert communication arose, which focuses on transmitting the confidential information from
a transmitter to legitimate receivers, while avoiding being detected by the potential warden [1, 2].

For instance, the transmitter Alice tends to transmit a confidential message to the receiver Bob with
in the presence of warden Willie. That is, Alice has to provide a reliable transmission to Bob while the
transmission remains hidden from Willie. Willie, on the other hand, is not interested in the content of the
message and only wants to determine whether Alice transmits any message to Bob or not. We note that
this is in strong contrast to the role of an eavesdropper in traditional physical layer security schemes where
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the eavesdropper is aware of the presence of a message transmission and looks to decode the information
transmitted from Alice to Bob.

Consequently, while Bob has to decode the information sent by Alice, Willie has to confront a detection
problem, attempting to distinguish between the two potential states of Alice’s transmission. Recent
research efforts in the domain of covert communications have explored different problems in this field, from
establishing the achievable fundamental limits to exploiting any uncertainties at the potential adversary
Willie, including noise, channel, network interference, and jamming signals/artificial noise introducing
uncertainties in Willie’s observations.

Noise uncertainty: The lack of knowledge of the exact noise power is called noise uncertainty. In
practice, the sources of background noise include thermal noise, quantization noise, imperfect filters, etc.
Noise uncertainty is almost unavoidable due to, e.g., temperature change, environmental noise change,
and calibration error. Therefore, the consideration of noise uncertainty is practical and necessary for
the study related to power detection. The authors in [3] considered two models of noise uncertainty
at the Willie, i.e., the bounded uncertainty model and the unbounded uncertainty model. In [4], the
noise uncertainty is used to analyze the minimum error detection probability of the warden to realize
covert wireless communication in space-air-ground integrated vehicular networks. Considering the noise
uncertainty at warden, the authors in [5] studied the IoT covert communication network with the channel
state information (CSI) unawareness at Bob.

Channel uncertainty: All the node experience uncertainty about their channel knowledge. One of
the main assumptions in most covert communications literature is that the CSI of both the covert link is
perfectly known by both the legitimate receiver and the transmitter. Usually, the CSI is obtained at the
receiver by channel estimation during pilot transmission. Then, a feedback link (if available) is used to
send the CSI to the transmitter. Hence, the accuracy of the channel estimation at the receiver affects the
quality of CSI at the transmitter. However, in covert communication scenarios, transmitting pilots and
acquiring feedback is often infeasible, especially as the transmission of pilots will also enable the adversary
to acquire channel information from the covert transmitter. The authors in [6] considered the scenario
where a public link is used to hide a cover link while users including the legitimate receiver and warden
Willie suffer from uncertainty in their channel knowledge from the transmitter. Under the CSI uncertainty
scenario, Willie’s optimal detection performance is derived and then the optimal transmission rates are
determined for both the legitimate and covert links under certain transmission outage probabilities. In
[7], the authors analyzed the ability of the suspicious receiver to detect the artificial noise under the
channel uncertainty and optimized the performance of the covert surveillance performance.

Interference: In practical wireless networks, a major source of the uncertain interference at the
receiver is the ambient signals from other transmitters, and the uncertainty of the aggregate received
interference at the warden will help to achieve the positive covert throughput in covert communications.
The uncertainty of the aggregated interference experienced by the warden is beneficial to the potential
transmitters for covert communication [8]. The authors in [9] studied covert communication in wireless
networks with the aid of stochastic geometry. Instead of assuming that all communication nodes in the
network are friendly helpers, it is assumed that all nodes in the network, which are distributed according to
a homogeneous Poisson point process (PPP), randomly transmit without the intention to help the covert
communication. When the interference is sufficiently small and comparable with the receiver noise, the
covert throughput increases as the density or the transmit power of the concurrent interferers increases.
The authors of [10] derived the exact covert capacity region in the covert communication network and
proved that the scheme using interference as noise is optimal.

Jamming signals/artificial noise: The performance of covert communication can be improved by
letting a friendly jammer deliberately broadcast a jamming signal to degrade the detection performance
of the adversary. If this jammer randomly varies its transmit power appropriately or if time-varying
multipath fading causes sufficient variation, channel estimation during periods outside the period time
when Willie is attempting to detect Alice’s transmission cannot be used to estimate the statistics of the
noise impacting Willie’s receiver during the period of interest [11]. The authors consider the use of an
FD receiver to achieve covert communication [12]. Specifically, the full-duplex (FD) receiver generates
AN with a randomized transmit power, causing deliberate confusion and affecting the decisions at Willie
regarding the presence of any covert transmissions. The use of an FD receiver generating AN provides
a cover for covert transmission and offers a multitude of benefits as compared to the use of a separate,
independent jammer. Being equipped with an FD receiver, we can exercise better control over the power
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Figure 1. Typical applications of relay network in covert communication systems: a) Greedy relay with blockage; b) Relay

with different duplex mode; c) Relay networks with relay selection ; d) Multi-Hop against UAV surveillance; e) Multi-Hop

against multiple collaborating Willies

used for transmitting AN, hence better management of system resources to achieve a higher covert rate.
Furthermore, while Willie will face strong interference, the self-interference at the FD receiver can be
greatly suppressed by the well-developed self-interference cancellation techniques. Furthermore, a finite
block-length covert communication scheme with artificial noise was proposed in [13]. In [14], the authors
investigated the influence of the jammer equipped with multiple antennas on Alice’s transmit power, and
consequently on covert communication performance. The authors in [15] adopted the channel inversion
power control to maintain the received power with a constant value for covert communication, while the
receiver sends the full-duplex artificial noise with random power, which allows the transmitter to ensure
security with higher transmit power.

The aforementioned contributions are mainly focused on improving wireless covertness without paying
much attention to communication reliability. When Alice and Bob are located far from each other, in
order to make the probability of error at Bob sufficiently small, Alice should use a high transmit power.
However, this increases the probability of being detected by Willie, especially if Willie is close to Alice
and thus receives a strong signal. The point-to-point covert communication in the presence of a single
warden that is discussed in the literature should be extended to scenarios with multiple receivers (hops)
for relaying the covert message.

2 Typical applications of relay for covert communications

The following discussions will show that the covertness of relay-assisted networks can be enhanced by
exploiting the distributed diversity and shortening the access distance with the relay. Figure 1 shows
several typical scenarios of relay-assisted covert communications. The existing research works on the
relay in covert communications are demonstrated to show how to achieve the demands of long-distance
wireless communication with low detection probability and reliable transmission.

2.1 Greedy relay with blockage

As shown in Fig. 1a, a one-way relay network over a Rayleigh fading channel is considered, in which
the source transmits information to the destination with the aid of the relay, since a direct link from
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source to destination is not available [16]. In the considered scenario, the source allocates some resources
(e.g., power [17] and spectrum) to relay in order to seek its help to relay the message to the destination.
However, in some scenarios, the relay may intend to use this resource to transmit its message to a
destination as well, which is forbidden by the source and thus should be kept covert from the source.
As such, in the considered system model the source is also the warden which is detecting whether the
relay transmits its information to the destination when it is aiding the transmission from the source to
the destination. The covert transmission from the relay to the destination is similar to steganography,
in which covert information is transmitted by hiding in innocuous objects. These innocuous objects are
utilized as “cover medium” to carry the covert information. In [16] and [17], the innocuous objects are
the forwarding transmissions from relay to the destination. The main difference between this work and
steganography is that in this work the covert information is shielded by the forwarding transmissions
from the relay to the destination at the physical layer, while in steganography the covert information is
hidden and transmitted by encoding or modifying some contents (e.g., shared videos or images) at the
application layer. The covert communication from a relay to a destination only occurs when the successful
transmission from source to destination is guaranteed. As such, when the covert message is transmitted
via the relay, successive interference cancellation (SIC) that allows a receiver to decode different signals
arriving simultaneously is implemented at the destination. Following SIC, the destination decodes the
stronger signal (i.e., original message) first, subtracts it from the combined signal, and finally decodes
the weaker one (i.e., covert message) from the residue. More recently, the authors in [18] proposed
two covert transmission schemes, named random beamforming and maximum-ratio transmission (MRT)
beamforming to guarantee reception reliability at the destination, when the greedy relay is equipped with
multiple antennas.

2.2 Relay with different duplex mode

Figure 1b illustrates that the relay can work in either the full-duplex (FD) mode or the half-duplex (HD)
mode [19]. Under the FD mode, the relay can simultaneously receive and forward information on the same
channel, but the communication is negatively affected by the self-interference of the Relay. Under the HD
mode, Relay receives and forwards information to users at two orthogonal time slots, which experience
two phases. Therefore, the relay to flexibly switch between the FD and HD modes for improving the
covert rate performance, and optimize the relay transmit power to achieve the covert rate maximization
under such a joint mode. It is worth noting that Relay always sends the jamming signal to Willie when
Alice does not transmit. Under the FD mode, although suffering from self-interference, can also enhance
the covert rate by careful power control. As for the HD mode, it can avoid the negative effect of self-
interference. However, it may reduce the covert rate due to the different receiving and forwarding time
slots at the relay.

2.3 Relay networks with relay selection

In multiple-relay networks, relay selection has been regarded as an effective technique to achieve spacial
diversity gain. In [20], a covert transmission scheme in a relay selection system was proposed, where the
relay with the best relay-to-destination link is selected to forward the information, it can also opportunis-
tically transmit its message covertly to the destination, which is shown in Fig. 1c. This relay network
consists of one source, one destination, and multiple decode-and-forward (DF) relays. When forwarding
the source’s message, the selected relay decodes the data received in the first phase, encodes them with
another codebook, and then transmits them to the destination. Hence, the received SNR at the relay
decides the success of decoding. The authors in [20] investigated the trade-off between covertness and
reliability in multiple relay systems, where the probability of detection error (i.e., covertness) is quanti-
fied in terms of the probability that the warden fails in detecting the power relay’s covert signal, while
reliability represents the probability that an outage event is encountered at the relay for decoding the
original message. This work showed that the diversity gain provided by relay selection will lead to a
decrease in the probability of detection error.
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Table 1. Typical Applications of relay for Covert Communications

Ref Main feature Roles of relay

[16, 17] Relay transmits covert information to Amplify-and-forward the original message
the destination on top of forwarding and superpose the covert information on

the source’s message. the existing communication.
[19] Relay can flexibly choose Amplify-and-forward the covert information

the FD or the HD mode. and send jamming signal to disturb Willie.
[20] The relay-to-destination link Decode-and-forward the original message

is selected to forward the information. and superpose the covert information on
the existing communication.

[21] Linear multi-hop relaying network Decode-and-forward the covert information.
is monitored by UAV.

[22] Multi-hop covert communication Decode-and-forward the covert information
find optimal routing under multiple with a single key or independent keys.
collaborating Willies’ surveillance.

Note: This is text of the table footnotes.

2.4 Multi-Hop against UAV’s surveillance

As shown in Fig. 1d, the authors in [21] considered an unmanned aerial vehicle (UAV) in the air to act as
a warden to monitor any covert communication and an eavesdropper to wiretap the transmitted signal.
Compared with the terrestrial channels, the characteristics of the air-to-ground channels make legitimate
information particularly vulnerable to being detected and wiretapped. Compared with the terrestrial
channels, the advantages of the air-to-ground channels lead to the proneness of legitimate information
leakage and detection. In order to reduce the information leakage for a pair of terrestrial nodes against
the UAV surveillance while maximizing the throughput, the optimal designs of coding rate, transmission
power, and the number of hops are exploited in this work. This strategy is especially suitable for networks
with limited energy and long-distance between the source and the destination.

2.5 Multi-Hop against multiple collaborating willies

In covert communication, when the distance between Alice and Bob becomes large compared with the
distance between Alice and Willie(s) shown in Fig. 1e, the performance of covert communication degrades.
In this case, multi-hop transmission via intermediate relays can help to improve performance. The multi-
hop covert communication over a moderate-size network and in the presence of multiple collaborating
Willies is studied in [22]. For covert communication, the source and the intermediate relays use a key
to encode the message. The relays can transmit covertly using either a single key for all relays or differ-
ent independent keys at the relays. The routing algorithms for maximizing the covert throughput and
minimizing the end-to-end delay are developed for two relaying approaches.

3 Intelligent reflecting surface assisted covert communication

Since the relay forwards signals to assist source-destination transmission in an active mode, leading to a
high power consumption problem when compared with the RIS. In addition, the amplifying noise at the
amplify-and-forward (AF) relay will increase the probability of being detected at Willie and the reduction
of the signal-to-noise ratio at the DF relay will lead to a higher decoding error probability.

As a special kind of relay, the authors in [23] presented the potential of using the intelligent reflecting
surface (IRS), also known as reflecting intelligent surface (RIS), to improve covert communication per-
formance. In this section, we propose a case study of RIS to assist the signal transmission from source to
destination while defending against Willie’s detection.
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3.1 Related work

IRS/RIS is a flat surface composed of a large number of reconfigurable and low-cost passive reflective
elements, each of which is capable of controlling the phase and amplitude of the incident signal for
optimal reflection, making the wireless channel between the transmitter and receiver more favorable
for communication [24]. Following [23], several IRS/RIS-aided covert communication approaches have
been developed. The authors in [25] considered the design of a latency-constrained covert RIS-assisted
communication system when with the global CSI and without Willie’s instantaneous CSI, respectively.
The authors examined RIS-assisted covert communications by considering only Willie’s statistical CSI is
available [26]. The authors of [27] investigated the multiple-input-multiple-output (MIMO) covert com-
munication assisted by RIS, where the covert rate was maximized by jointly designing the transmit
covariance matrix and phase shift matrix. In [28], the authors proved that the reliability of communica-
tion transmission can be improved by adding RIS elements. Under the assumption that the number of
channels used is infinite, the influence of AN on IRS-assisted covert communication is studied [29]. The
authors in [30] adopted a two-way relaying protocol in the full-duplex relaying network assisted by RIS
to realize covert communication. In [31], the authors studied the covert beamforming design of the IoT
network assisted by the RIS. The information freshness maximization problem in IRS-aided full-duplex
covert communications was studied in [32], where the non-retransmission protocol and the automatic
repeat-request (ARQ) protocol are considered. In [33], UAV and IRS are combined to improve covert
communication performance.

It should be emphasized that the existing studies on RIS-assisted covert communication all adopted
fully-passive beamforming. In traditional RIS-assisted covert communication, due to the “double fading”
effect of RIS, it’s gain for covert performance is small [34], and the passive reflection of RIS limits the
freedom of beamforming. The traditional RIS can be easily outperformed by a half-duplex relay when
the number of elements in the RIS is not sufficiently large. Motivated by this, if a few passive elements
of the IRS/RIS are replaced by active ones, the gain from active relaying can be achieved. The idea
is to activate some elements of the RIS by connecting them to radio frequency (RF) chains and power
amplifiers. This implies that if a few passive elements of the RIS are replaced by active ones, such
that the traditional IRS becomes a hybrid relay-reflecting intelligent surface (HR-RIS) [35]. The active
elements can not only modify the phase but also amplify the incident signal, improving the degrees of
freedom in the beamforming. However, the amplitude of the passive element is generally set to 1, which
means that it can only adjust the phase of the incident signal. HR-RIS requires extra cost in hardware
implementation of active elements and signal processing. However, these only require a single or several
active elements. Hardware and computing costs increase only slightly, given that the total number of
elements in a traditional RIS is very large. It is not difficult to find that the active beamforming in
HR-RIS is similar to the relay.

In HR-RIS-assisted covert communications, the reconfigurability of HR-RIS can be used to establish a
favorable environment to enhance the quality of legitimate communications. Besides, the passive elements
do not use a transmitter module, which incurs no additional power consumption and hardware cost
compared with existing technologies based on active elements [36]. The active elements exploit the extra
power consumption to overcome the “double-fading” effect. Compared to the AF relay, active elements
utilize the principle of electromagnetic scattering to amplify signals directly, without the RF chain.
Furthermore, HR-RIS works in FD mode without self-interference elimination.

In this paper, we consider covert communication from a transmitter (Alice) to a receiver (Bob) with
the help of HR-RIS. In order to help Bob realize the low probability of being detected by Willie and
improve the covert rate, an alternate optimization method was proposed to obtain the optimal reflection
coefficient and transmit power. Our novelty is summarized as follows:

(1) We propose covert communication assisted by HR-RIS. The HR-IRS only needs to activate one or
more elements of the IRS to act as an active relay. In this system, we consider the maximization of
Bob’s (covert user) covert rate under the covert constraint and total power constraint. For obtaining
an efficient solution, matrix decomposition is used to deal with the non-convexity of the problem.
On this basis, an alternating optimization (AO) method is proposed to obtain the optimal reflection
phase shift of HR-IRS.

(2) Considering covert communication with finite block length, we used the Kullback-Leibler (KL) diver-
gence on Willie as the covert constraint. In this case, the closed-form expression of the covertness
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Figure 2. HR-RIS aided covert communication

constraint is derived, and it is proved that the KL divergence used in the covertness constraint is a
monotonically increasing function of Willie’s received power, based on which the optimal transmit
power of Alice is obtained.

(3) We evaluate the performance of the proposed HR-IRS-assisted covert communication through sim-
ulations. Particularly, it shows that having a small number of active elements in the HR-IRS can
significantly improve the achievable covert rate. In addition, compared with traditional IRS/RIS-
assisted covert communication systems, our proposed system can obtain a large amount of covert rate
gain.

3.2 Proposed HR-RIS assisted covert communication

As shown in Fig. 2, we propose a covert communication transmission scheme assisted by HR-RIS, where
a transmitter (Alice) intends to send confidential information to a legitimate receiver (Bob) with the
aid of the HR-RIS, while a warden (Willie) attempts to detect the existence of this transmission. There
are two paths from Alice to Bob, i.e., one is the direct link, and the other is the reflection/relaying link
via HR-RIS. Similarly, there are also two paths from Alice to Willie. In addition, it is assumed that the
signals reflected by the HR-RIS twice or more are ignored due to the significant path loss.

Alice, Bob, and Willie are assumed to be equipped with Na, Nb, and Nw antennas, respectively. The
HR-RIS is assumed to be equipped with N elements, including M passive reflecting elements and K
active relaying elements (i.e., M +K = N). The passive reflecting elements are implemented by a phase
shifter, while the active relaying elements can tune the phase and amplitude of the incident signal. We
assume that the active elements work in the AF mode. Therefore, for K = 0, HR-RIS returns to the
traditional RIS. For K = N , by contrast, it becomes a relay station equipped with N antennas. Hence,
in this work, we have 1 ≤ K ≤ N . Furthermore, similar to the conventional RIS, we assume that each
(active/passive) element of HR-RIS can independently reflect the received signals.

For the HR-RIS, Q represents the set of active relay elements. We define Θ = Φ + Ψ, where Θ =
diag{θ1, . . . , θN} ∈ CN×N , Φ = diag{φ1, . . . , φN} ∈ CN×N , and Ψ = diag{ψ1, . . . , ψN} ∈ CN×N , where
Φ and Ψ denote the reflection coefficients of passive elements and active elements, respectively. Therefore,
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we have

θn =
{
|βn|ejµn , if n ∈ Q,
ejµn , otherwise, (1)

where µn ∈ [0, 2π) represents the phase shift. We notice that |βn| = 1 for n /∈ Q, and |βn| for n ∈ Q is
determined by the total power of the active elements, which will be discussed later.

3.2.1 Transmission from Alice to Bob

When Alice transmits a confidential message, the received signal at Bob is given by

yb =
√
PaHrbΨHarx +

√
PaHrbΦHarx +

√
PaHabx + HrbΨnr + nb

=
√
Pa(HrbΘHar + Hab)x + nbt, (2)

where nbt = HrbΨnr + nb represents the total effective noise at the Bob. Har and Hab are the steering
vectors from Alice to HR-RIS and the steering vector from Alice to Bob, respectively, and Hrb denotes
the steering vector from HR-RIS to Bob. In addition, nr ∼ CN (0, σ2

rIK) and nb ∼ CN (0, σ2
b INb

) are the
complex additive white Gaussian noise (AWGN) space vectors at the K active elements of the HR-RIS and
the Bob, respectively. For simplicity, we assume that σ2

r = σ2
b and nbt ∼ CN (0, σ2

b (INb
+HrbΨΨHHH

rb)). x
is the signal vector transmitted by Alice, with each element following CN (0, 1), and Pa is Alice’s transmit
power, which should meet the constraint condition Pa ≤ Pmax

a , where Pmax
a is the maximum transmit

power of Alice.
We assume that Bob’s CSI is perfectly known by himself through channel estimation [37]. Fol-

lowing (2), Bob’s covert rate in the HR-RIS-aided covert communication system can be expressed as
[35]

f(Θ, Pa) = log2 |INb + Ωb|, (3)

where Ωb = PaUbR−1/σ2
b , the signal covariance matrix is given by Ub = (HrbΘHar +Hab)(HrbΘHar +

Hab)H , and the aggregate noise covariance matrix is given by R = (INb
+ HrbΨΨHHH

rb) ∈ CNb×Nb .
The transmit power of the active elements at the HR-RIS can be expressed as

Pr = Tr(Ψ(HrbHH
rbPa + σ2

b )ΨH), (4)

which should meet the constraint condition Pr ≤ Pmax
r , where Pmax

r is the maximum transmit power of
all the K active elements.

3.2.2 Binary hypothesis testing at Willie

In this work, we focus on delay-constrained covert communication, that is, the number of channel uses L
is finite. In order to detect the existence of a transmission, Willie attempts to distinguish the following
two hypotheses:

yw =
{

nw, H0,√
Pa(HrwΘHar + Haw)x + HrwΨnr + nw, H1, (5)

where Haw and Hrw are the steering vector from Alice to Willie and the steering vector from HR-
RIS to Willie, respectively, and nw ∼ CN (0, σ2

wINw
) is the AWGN space vector at Willie. H0 denotes

the null hypothesis in which Alice does not transmit, and H1 denotes the alternative hypothesis where
Alice transmits signals. Similarly, we assume that σ2

w = σ2
r . Therefore, the total noise power at Willie is

nwt = (HrwΨnr + nw) ∼ CN (0, σ2
w(INw + HrwΨΨHHH

rw)) under H1.
Considering the worst-case scenario for covert communication, we assume that Willie knows the

channels perfectly. In this case, Willie has the maximum detection probability, and the corresponding
covert performance can be used as a lower bound. In practice, the covert performance will be better than
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or equal to the worst case. The probability density function of yw under H0 and H1 can be respectively
given by

f(yw|H0) = CN (0, σ2
wINw ),

f(yw|H1) = CN (0, PaUw + σ2
w(INw

+ HrwΨΨHHH
rw)), (6)

where Uw = (HrwΘHar + Haw)(HrwΘHar + Haw)H .
Based on (6), the optimal detection threshold and the corresponding minimum detection error rate

ξ∗ at Willie can be derived [38]. However, due to the expression for ξ∗ involves an incomplete gamma
function, which cannot be handled by subsequent analysis and design. In order to deal with this difficulty,
we present a lower bound of ξ∗. which is given by [39]

ξ∗ ≥ 1−
√

1
2
D01, (7)

where D01 is the Kullback-Leibler (KL) divergence from P0 to P1, which is given by [38]

D01 = L

[
ln(1 + γw)− γw

1 + γw

]
, (8)

where γw is the signal-to-interference-plus-noise ratio (SINR) at Willie under H1 is given by

γw =
|Uw|Pa
(|M|σ2

w)
, (9)

where M = (INw
+ HrwΨΨHHH

rw). We note that Uw and M are Hermitian matrices. Then, we perform
the eigenvalue decomposition (EVD) on the above two matrices, which can be written as Uw = GΞG−1

and M = JΛJ−1, where G and J are matrices of eigenvectors of Uw and M, respectively, and G and J
∈ CNw×Nw , Ξ = diag {ω1, ω2, . . . , ωNw

}, ωn is the nth eigenvalue of Uw, Λ = diag {κ1, κ2, . . . , κNw
}, κn

is the n-th eigenvalue of M. As such, we have |Uw| =
∏Nw

i=1 ωi and |M| =
∏Nw

i=1 κi.
In covert communications, ξ∗ > 1 − ε is generally adopted as the covertness constraint, where ε is a

small value to determine the required covertness level. Therefore, according to (7) and (8), we obtained
the covertness constraint of Willie, which can be rewritten as

D01 ≤ 2ε2. (10)

3.2.3 Problem formulation and solution

In this part, we jointly design the transmit power at Alice and relay/reflection coefficients of the HR-
RIS to maximize the covert rate at Bob subject to the covertness and other constraints, of which the
optimization problem can be formulated as

(P1) : max
Θ,Pa

f(Θ, Pa), (11a)

s.t. D01 ≤ 2ε2, (11b)
|βn| = 1, for n /∈ Q, (11c)
Pa ≤ Pmax

a . (11d)

Our goal is to maximize the covert rate at Bob by jointly designing Pa and Θ. We propose an
alternating optimization algorithm to optimize Pa and Θ. Specifically, we first optimize Θ for a given
Pa, and the objective function is transformed into a form that is easy to handle. Then, we optimize Pa
for a given Θ.

First, we randomly generate the coefficient of HR-RIS and use D01 = 2ε2 to get feasible Pa. The
objective function f(Θ, Pa) is non-convex with respect to Θ. In addition, the feasible set of (P1) is
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non-convex due to the unit-modulus constraint (11c). Therefore, (P1) is difficult to be tackled. Thus, we
approximate the objective function f(Θ, Pa) by using its upper bound f0(Θ, Pa), which can be written
as

f(Θ, Pa) = log2

∣∣∣∣INb
+
PaUbR−1

σ2
b

∣∣∣∣
= log2 |R + ρUb| − log2 |R|
a
≤ log2 |R + ρUb|
= log2

∣∣R + ρ(HrbΘHar + Hab)(HrbΘHar + Hab)H
∣∣

= f0(Θ, Pa), (12)

where ρ = Pa/σ
2
b and a is achieved by set Q = ∅. We note that this upper bound becomes tighter as

log2 |R| decreases.
Generally, the proposed solution is a sequential procedure where in each iteration, a specific coefficient

of HR-RIS is updated when the others are fixed. Specifically, we let aHn ∈ CNb×1 denote the n-th row
of Hab, and bn ∈ CNb×1 denote the n-th column of Hrb, i.e., Har = [a1,a2, . . . ,aN ]H , and Hrb =
[b1,b2, . . . ,bN ]. Since Ψ and Θ are diagonal matrices, we have HrbΘHar =

∑N
n=1 θnbnaHn and HrbΨ =∑

n∈Q θnbn. Hence, we can rewrite f0(Θ, Pa) as

f0(Θ, Pa) = log2

∣∣R + ρ(HrbΘHar + Hab)(HrbΘHar + Hab)H
∣∣

= log2

∣∣INb
+
∑
i∈Q

θibiθ∗i b
H
i + ρ

N∑
i=1

|θi|2biaHi aibHi

+ ρHabHH
ab + ρ

N∑
i=1

N∑
j=1,j 6=i

θiθ
∗
jbia

H
i ajbHj

+ ρ

N∑
i=1

(Habθ
∗
i aib

H
i + θibiaHi HH

ab)
∣∣. (13)

The objective function f0(Θ, Pa) can be rewritten as

f0(Θ, Pa) = log2

∣∣An + |θn|2Bn + θnCn + θ∗nCH
n

∣∣
= log2 |An|+ f1(Θ, Pa), (14)

where An,Bn,Cn are obtained by some transformation.
Since An is an invertible matrix satisfying rank(An) = Nb. Moreover, log2(|An|) is a constant, and

f1(Θ, Pa) is given by

f1(Θ, Pa) = log2

∣∣INb
+ |θn|2A−1

n Bn + θnA−1
n Cn + θ∗nA−1

n CH
n

∣∣.
Similarly, the relationship between the transmit power of the relay and Ψ can be determined as

Pr = Tr(Ψ(HrbHH
rbPa + σ2

b )ΨH)

= Pa
∑
n∈Q
|ψn|2||bn||2 + σ2

b

∑
n∈Q
|ψn|2

=
∑
n∈Q
|ψn|2[Pa||bn||2 + σ2

b ]. (15)

Denote P̃r =
∑
i∈Q,i6=n |ψi|2[σ2

b +Pa||bn||2], which is a constant due to that the variables
∑
i∈Q,i6=n ψi

are fixed. Therefore, (15) can be rewritten as

Pr =
∑
n∈Q
|ψn|2[Pa||bn||2 + σ2

b ] + P̃r

=
∑
n∈Q
|βn|2[Pa||bn||2 + σ2

b ] + P̃r. (16)
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Here, we notice that |ψn|2 = |βn|2 for n ∈ Q.
Following the above, the problem of updating Θ, denoted by (P2), is given by

(P2) : max
Θ

f1(Θ, Pa) (17)

s.t. |βn| = 1, for n /∈ Q,

|βn|2 ≤
Pmax
r − P̃r

[σ2
b + Pa||bn||2]

, for n ∈ Q.

In order to efficiently determine the optimal closed-form solution to (P2), the objective function
f1(Θ, Pa) can be rewritten as

f1(Θ, Pa) = log2 |Dn + θnA−1
n Cn + θ∗nA−1

n CH
n |

= log2 |Dn|+ log2|INb
+ θnE−1

n Cn + θ∗nE−1
n CH

n |, (18)

where Dn = INb
+ |θn|2A−1

n Bn and En = AnDn.
We next analyse the objective function f1(Θ) by considering the first term in (18), i.e., log2 |Dn|.

Specifically, for |Dn|, we note that rank(A−1
n Bn) < rank(Bn) = 1. Moreover, the probability of

rank(A−1
n Bn) is close to zero (it only happens when A−1

n Bn = 0). Thus, we have rank(A−1
n Bn) = 1. Sim-

ilarly, we find that A−1
n Bn is not diagonalizable when rank(A−1

n Bn) = 0, which usually rarely happens.
Based on this, we have (A−1

n Bn) 6= 0 with a high probability and A−1
n Bn is diagonalizable. Hence, we

can rewrite A−1
n Bn = WnΣnW−1

n based on EVD, where Σn = diag{ιn, 0, . . . , 0}, ιn is the only non-zero
eigenvalue of (A−1

n Bn). Finally, since both An and Bn are positive semidefinite, ιn is nonnegative and
real. Thus, we have

log2 |Dn| = log2

∣∣1 + |θn|2ιn
∣∣ , (19)

where ιn is the only non-zero eigenvalue of A−1
n Bn.

We are now focusing on the second term of (18). Thus, we have E−1
n Cn = TnΓnT−1

n based on the
EVD, where Tn ∈ CNb×Nb , Γn = diag {λn, 0, . . . , 0}, λn is the sole non-zero eigenvalue of E−1

n Cn. Let
Vn = TnAnT−1

n , and vn denote first element of the first column of V−1
n and v

′

n denote first element of
the first row of Vn. Note that it follows that v

′

nvn = 1. So, according to the [40], we can write

log2|INb
+ θnE−1

n Cn + θ∗nE−1
n CH

n | = log2(1 + |θn|2|λn|2 + 2R(θnλn)− v
′

nvn|λn|2), (20)

where R denotes the real part of a complex number. We note that the additional coefficient |θn|2 is related
to the active relay elements in HR-RIS, which does not exist in traditional RIS.

In summary, based on (19) and (20), we have

f1(Θ, Pa) = log2(1 + |θn|2ιn) + log2(1 + |θn|2|λn|2 + 2R(θnλn)− v
′

nvn|λn|2). (21)

Hence, according to (21) we have µ∗n = arg(λn). So the optimal solution of the problem (P2) is given
by

θ∗n =
{
|βn|e−jarg(λn), n ∈ Q,
e−jarg(λn), n /∈ Q. (22)

In the HR-RIS, Q is available to determine {|βn|}n∈Q. Therefore, from (P2), we obtain

|βn| =

√
Pmax
r − P̃r

[σ2
b + Pa||bn||2]

, n ∈ Q. (23)

As a result, the optimal solution to (P2) is given as

θ∗n =


√

Pmax
r −P̃r

[σ2
b+Pa||bn||2]e

−jarg(λn), n ∈ Q,

e−jarg(λn), n /∈ Q.
(24)
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Remark 1. Substituting P̃r =
∑
i∈Q,i6=n |βi|2[σ2

b + Pa||bn||2], n ∈ Q to (23), it is observed that a larger
K results in a smaller |βn|. Therefore, increasing the number of active elements (i.e., K) does not always
guarantee the covert rate improvement of HR-RIS over traditional IRS. In particular, with a limited
power budget Pmax

r , the HR-RIS can have |βn| < 1, which attenuates the signal and degrades the covert
rate. In this case, HR-RIS with a smaller K is more likely to attain a covert rate gain than those with
more active elements. This conclusion will be further demonstrated numerically.

For a given Θ, we proved that the KL divergence adopted in the covertness constraint is a monotoni-
cally increasing function of the transmit power at Alice. Based on this, we can find the optimal transmit
power of Alice P ∗a by solving D01 = 2ε2. According to ((11)d), P ∗a = min(Pa, Pmax

a ) is the global optimal
solution. Take P ∗a into (23) to get the amplitude coefficient of the optimized HR-RIS.

The details of the process are shown in Algorithm 1.

Algorithm 1 Find reflecting coefficients of the HR-RIS and transmit power
1: Input: Har, Hrb, Hab, Hrw, Haw,Q.
2: Output: {θ∗1 , θ∗2 , . . . , θ∗N}, P ∗a .
3: Randomly generate a matrix θn where |βn| = 1, n /∈ Q, and

∑
n∈Q |βn|2[Pa||bn||2 + σ2

b ].
4: while The objective function does not converge do
5: for n = 1 → N do
6: Compute An, Bn, and Cn.
7: Dn = INb + |θn|2A−1

n Bn, En = AnDn.
8: Find λn as the sole non-zero eigenvalue of E−1

n Cn.
9: Update θ∗n as (24).

10: end for
11: end while
12: Find the optimal P ∗a based on D(P0|P1) = 2ε2.
13: Update |βn| as (23).

Remark 2. According to (16), the amplitude of the active element will increase with its power, which
increases the received power at Bob and Willie. Besides, from (8), when the covertness constraint satisfies
D01 = 2ε2, we can infer that the γw at Willie is a fixed value, therefore the transmit power should be
decreased. In addition, the active element will amplify the noise at Willie and reduce γw, therefore, the
transmit power will increase. Therefore, the increase in active power will cause a change in the transmit
power.

The optimal number of active elements K can be solved by numerical search, which maximizes the
objective function. From (16), for a given Pmax

r , the optimal number of active elements K can be solved
by a one-dimensional bisection search over the interval [1, N − 1], where 1 and N − 1 are the lower and
upper bounds of the search interval. Given the accuracy 1, N − 1 represents the number of elements
that need to be compared by the bisection method, which means that the maximum iteration number is
(log2(N − 1)).

3.2.4 Convergence and complexity of the proposed algorithm

From Algorithm 1, we aim to find the unique non-zero eigenvalue of the matrix E−1
n Cn. In each iteration,

we find the unique non-zero eigenvalue of E−1
n Cn as a reflection coefficient of each HR-RIS element, so

we can ensure that the objective function f(Θ, Pa) is nondecreasing, defined as

f(Θ(t), P (t)
a ) ≤ f(Θ(t), P (t+1)

a ) ≤ f(Θ(t+1), P (t+1)
a ), (25)

where Θ(t+1) and P (t+1)
a are the optimal solutions of HR-RIS and the optimal solutions of transmit power

at the Alice. Therefore, the proposed AO algorithm monotonically converges to the local optimum of (P1)
[41].
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Figure 3. Covert rate versus the total number of reflecting elements at HR-RIS for different values of the covertness level

ε, where K = 3, Pmax
r = −30 dBm

3.2.5 The challenge to design a covert communication system by using the HR-RIS

In relay-assisted covert communication, it is generally only designed the relay beamforming vector aligns
to Bob. In HR-RIS-assisted covert communication, the phase and amplitude of each element should
be optimized, and the constant modulus constraint of passive elements is non-convex, improving the
complexity of optimization. Compared with passive RIS, the active elements of HR-RIS will amplify the
noise, which increases the design challenge of realizing covert transmission.

3.2.6 Numerical results

In Fig. 3, we plot the covert rate of Bob versus the total reflection elements N of the HR-RIS under
different covert constraints ε. In this figure, we first observe that Bob’s covert rate increases as N increases.
We also note that for a given N , Bob’s covert rate decreases as the ε decreases due to the fact that the
covert constraint gets tighter. As expected, the figure illustrates that the use of active elements (i,e.,
K = 3) can achieve significant performance improvement with a higher covert rate at Bob compared
with the traditional RIS, which demonstrates the benefits of introducing active elements to RIS in covert
communications.

In Fig. 4, we investigate the covert rate versus the number of active elements K with different covert
constraints. In this figure, it can be seen that Bob’s covert transmission rate increases as K increases. For
a small K, the HR-RIS performs far better than the RIS, even with a limited power budget. However,
increasing K does not guarantee the covert rate improvement, especially for low Pmax

r , which is explained
in Remark 1. As a result, when the maximum covert rate is obtained, we will not continue to increase
the number of active elements K. Therefore, we can get the optimal number of active elements from this
figure. Based on this, we can conclude that a small amount of active elements (e.g., 5) is sufficient for
HR-RIS to achieve a significant improvement in terms of the covert rate when compared to conventional
IRS/RIS-aided covert communication schemes.

In Fig. 5, we investigate the covert rate versus the different distance between Alice and the IRS/HR-
RIS Xr. For ease of comparison between different schemes, IRS and HR-RIS are assumed to be used in
the same location. It can be observed that the optimal HR-RIS position to achieve the maximum covert
rate is close to Bob (i.e., (50 m, 2 m)), which is because the path loss from HR-RIS to Bob is small.
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Figure 4. Covert rate versus the number of the active elements at the HR-RIS K for different values of the covertness level
ε, where N = 64, Pmax

r = −30 dBm

Figure 5. Covert rate versus different distance between Alice and the IRS/HR-RIS, where N = 64, K = 2, and Pmax
r =

−30 dBm

Likewise, this figure shows that the HR-RIS system with active components achieves a higher covert rate
when compared to the traditional RIS scheme.

In Fig. 6, we plot the transmit power versus the active elements’ power with different covertness
constrains. From the figure, when Pmax

r increases, the transmit power Pa will increase and approaches
a limit value, which is explained in Remark 2. Therefore, employing active elements can use a higher
transmit power to improve covert communication.
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Figure 6. Transmit power versus the power of the active relay elements of the covertness level ε, where K = 3

Figure 7. Covert rate versus different scheme with ε = 0.01, K = 3 Pmax
r = −30 dBm

In Fig. 7, we plot the covert rate versus the number of total elements with different schemes, where
ε = 0.01, K = 3. From the figure, we can observe the active RIS is significantly better than the passive
RIS, meanwhile, the performance of the proposed scheme is superior to that of the other two cases, which
validates the effectiveness of our algorithm.
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4 Conclusions

In this article, we first presented typical applications of relays in covert communication. Then, we proposed
a covert communication scheme with the help of HR-RIS, where several elements are active elements,
and the remaining ones as passive reflecting elements. We used KL divergence to represent Willie’s
detection performance, based on which, we obtained the optimal value of Alice’s transmit power. Then,
we used an alternating optimization algorithm to obtain the optimal reflection coefficients of HR-RIS
to improve covert communication performance. The numerical results demonstrated that the proposed
scheme significantly outperforms the conventional IRS/RIS-aided covert communication schemes in terms
of covert rate by using a small number of active elements.
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