281 research outputs found

    Decadal Variation of the Southwest U.S. Summer Monsoon Circulation and Rainfall in a Regional Model

    Get PDF
    Previous studies have identified several major causes for summer rainfall variations over the southwest United States, for example, land memory (i.e., relationships between antecedent winter season precipitation and snow cover anomalies and subsequent summer rainfall anomalies over the southwest United States; these anomalies are likely most important in the northwest United States, although antecedent anomalies in the southwest United States also may be important in determining summer rainfall variations) and sea surface temperature (SST) anomalies in the North Pacific. Atmospheric responses to these “boundary forces” interact with moisture flows from the Gulf of Mexico and from the Gulf of California to influence the rainfall in the Southwest. The land memory and the SST effects were further found to be “naturally separated,” in the sense that they each played a dominant role influencing the monsoon rainfall variation during different periods of the last century. This separation was also manifested by different dominant low-level moisture transport anomalies in those periods. Several new questions have arisen from these findings: How have the land memory and the SST effects been “separated,” so as to affect the monsoon rainfall variations during different periods, or “regimes”? And, what are the corresponding changes of low-level flows, and hence moisture transports into the southwest United States that help achieve the land memory or the SST effects on the rainfall variations during these different regimes? These questions, and related issues, are addressed using a numerical model of regional climate. The model was used to simulate 14 individual warm seasons (April–October) in each of the postulated regimes. Analyses of the simulation results showed systematic and significant changes in atmospheric circulation anomalies between the two regimes. In the early regime (1961–90), when the land memory effect was strong, the average geopotential height was lower and storm activity was more intense over the central and western United States than in the more recent regime (from 1990 on), indicating reduced eddy energy and momentum exchanges between high and low latitudes in the western United States. The effects of these changes on the monsoon rainfall were achieved by very different low-level flow and moisture transport anomalies. In the earlier regime, low-level flow and moisture transport anomalies in the southwest United States were primarily due to easterlies and southeasterlies into the Southwest for its wet monsoon conditions, with reversed anomalies for dry conditions. In the recent regime, these anomalies changed, with primarily southerlies and south- westerlies from the Gulf of California into the Southwest during its wet monsoon conditions, and reversed flow anomalies for dry conditions. These changes indicate that different physical processes, including those responsible for the planetary-scale atmospheric circulation, led to monsoon rainfall variations during each of these regimes

    EFFECTS OF TEMPERATURE ANOMALIES ON THE PALMER DROUGHT SEVERITY INDEX IN THE CENTRAL UNITED STATES

    Get PDF
    The purpose of this study is to improve our understanding of temperature and precipitation effects on the Palmer Drought Severity Index (PDSI). Both theoretical and observational analyses were applied to separate and compare temperature and precipitation effects on PDSI. The results showed that because of the dependence of PDSI on the ‘climatologically appropriate rainfall’, which is a function of time and varies with surface air temperature, the PDSI can be equally affected by temperature and precipitation, when both have similar magnitudes of anomalies. Calculations using observational data further illustrated the temperature influence on PDSI in different climate regions in the central United States. The temperature effect on PDSI complicates the usage of the index in interpreting precipitation anomalies and its application in inferring precipitation variations, particularly from reconstructed PDSI

    Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets

    Get PDF
    The arid and semiarid region in central Asia is sensitive and vulnerable to climate variations. However, the sparse and highly unevenly distributed meteorological stations in the region provide limited data for understanding of the region’s climate variations. In this study, the near-surface air temperature change in central Asia from 1979 to 2011 was examined using observations from 81 meteorological stations, three local observation validated reanalysis datasets of relatively high spatial resolutions, and the Climate Research Unit (CRU) dataset. Major results suggested that the three reanalysis datasets match well with most of the local climate records, especially in the low-lying plain areas. The consensus of the multiple datasets showed significant regional surface air temperature increases of 0.36°–0.42°Cdecade-1 in the past 33 years. No significant contributions from declining irrigation and urbanization to temperature change were found. The rate is larger in recent years than in the early years in the study period. Additionally, unlike in many regions in the world, the temperature in winter showed no increase in central Asia in the last three decades, a noticeable departure from the global trend in the twentieth century. The largest increase in surface temperature was occurring in the spring season. Analyses further showed a warming center in the middle of the central Asian states and weakened temperature variability along the northwest–southeast temperature gradient from the northern Kazakhstan to southern Xinjiang. The reanalysis datasets also showed significant negative correlations between temperature increase rate and elevation in this complex terrain region

    Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets

    Get PDF
    The arid and semiarid region in central Asia is sensitive and vulnerable to climate variations. However, the sparse and highly unevenly distributed meteorological stations in the region provide limited data for understanding of the region’s climate variations. In this study, the near-surface air temperature change in central Asia from 1979 to 2011 was examined using observations from 81 meteorological stations, three local observation validated reanalysis datasets of relatively high spatial resolutions, and the Climate Research Unit (CRU) dataset. Major results suggested that the three reanalysis datasets match well with most of the local climate records, especially in the low-lying plain areas. The consensus of the multiple datasets showed significant regional surface air temperature increases of 0.36°–0.42°Cdecade-1 in the past 33 years. No significant contributions from declining irrigation and urbanization to temperature change were found. The rate is larger in recent years than in the early years in the study period. Additionally, unlike in many regions in the world, the temperature in winter showed no increase in central Asia in the last three decades, a noticeable departure from the global trend in the twentieth century. The largest increase in surface temperature was occurring in the spring season. Analyses further showed a warming center in the middle of the central Asian states and weakened temperature variability along the northwest–southeast temperature gradient from the northern Kazakhstan to southern Xinjiang. The reanalysis datasets also showed significant negative correlations between temperature increase rate and elevation in this complex terrain region

    Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets

    Get PDF
    The arid and semiarid region in central Asia is sensitive and vulnerable to climate variations. However, the sparse and highly unevenly distributed meteorological stations in the region provide limited data for understanding of the region’s climate variations. In this study, the near-surface air temperature change in central Asia from 1979 to 2011 was examined using observations from 81 meteorological stations, three local observation validated reanalysis datasets of relatively high spatial resolutions, and the Climate Research Unit (CRU) dataset. Major results suggested that the three reanalysis datasets match well with most of the local climate records, especially in the low-lying plain areas. The consensus of the multiple datasets showed significant regional surface air temperature increases of 0.36°–0.42°Cdecade-1 in the past 33 years. No significant contributions from declining irrigation and urbanization to temperature change were found. The rate is larger in recent years than in the early years in the study period. Additionally, unlike in many regions in the world, the temperature in winter showed no increase in central Asia in the last three decades, a noticeable departure from the global trend in the twentieth century. The largest increase in surface temperature was occurring in the spring season. Analyses further showed a warming center in the middle of the central Asian states and weakened temperature variability along the northwest–southeast temperature gradient from the northern Kazakhstan to southern Xinjiang. The reanalysis datasets also showed significant negative correlations between temperature increase rate and elevation in this complex terrain region

    Multiple-Year Droughts In Nebraska

    Get PDF
    Most people understand that droughts have had a major impact on Nebraska in the past. Yet, many Nebraskans continue to be surprised when drought occurs. It is important to remember that droughts, including multiple-year droughts, are a normal part of Nebraska’s climate. This NebGuide discusses the history of drought in Nebraska, and aims to help Nebraskans better understand the range of climatic variability when they plan for drought

    Effects of climate and landcover change on stream discharge in the Ozark Highlands, USA

    Get PDF
    Stream discharge of a watershed is affected and altered by climate and landcover changes. These effects vary depending on the magnitude and interaction of the changes, and need to be understood so that local water resource availability can be evaluated and socioeconomic development within a watershed be pursued and managed in a way sustainable with the local water resources. In this study, the landcover and climate change effects on stream discharge from the Jacks Fork River basin in the Ozark Highlands of the south-central United States were examined in three phases: site observation and data collection, model calibration and simulation, and model experiment and analysis. Major results of the study show that climate fluctuations between wet and dry extremes resulted in the same change of the basin discharge regardless of the landcover condition in the basin. On the other hand, under a specified climate condition landcover change from a grassland basin to a fully forested basin only resulted in about one half of the discharge change caused by the climate variation. Furthermore, when landcover change occurred simultaneously with climate variation, the basin discharge change amplified significantly and became larger than the combined discharge changes caused by the climate and landcover change alone, a result indicating a synergistic effect of landcover and climate change on basin discharge variability

    The Effects of Temperature and Temperature-Humidity Index on Pregnancy Rate in Beef Cows

    Get PDF
    Ten years of records from a 150- head beef cow herd were used to determine the relationship of temperature and temperature-humidity index (THI) on pregnancy rate in beef cows. Pregnancy rate of the herd for the duration of the experiment averaged 92%. There was a linear relationship between average 30-day temperature and pregnancy rate during the first 30 days of the breeding season. Average THI greater than 65 for the first 30 days of the breeding season tended to decrease pregnancy rate in the first 30 days, but there was no effect on herd pregnancy rate. If the 60-day average THI was greater than 70, pregnancy rate for 60 days tended to decrease. Breeding season THI had no effect on pregnancy rate. High temperatures and high temperature-humidity index decrease the pregnancy rate during the first 30 days of the breeding season. Cows acclimate to environmental conditions and if the length of the breeding season is 60 days or more, pregnancy rate is not compromised

    Microwave Electrodynamics of Electron-Doped Cuprate Superconductors

    Full text link
    We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.Comment: 4 pages, 4 figures, 1 table. Submitted to Physical Review Letters revised version: new figures, sample characteristics added to table, general clarification give

    VX Hydrolysis by Human Serum Paraoxonase 1: A Comparison of Experimental and Computational Results

    Get PDF
    Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VXts) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VXts complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VXts coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.United States. Defense Threat Reduction Agenc
    • 

    corecore