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Effects of climate and landcover change on stream discharge
in the Ozark Highlands, USA ∗

Qi Hu a,∗∗, Gary D. Willson a,b, Xi Chen a and Adnan Akyuz c
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Stream discharge of a watershed is affected and altered by climate and landcover changes. These effects vary depending on the magni-
tude and interaction of the changes, and need to be understood so that local water resource availability can be evaluated and socioeconomic
development within a watershed be pursued and managed in a way sustainable with the local water resources. In this study, the landcover
and climate change effects on stream discharge from the Jacks Fork River basin in the Ozark Highlands of the south-central United States
were examined in three phases: site observation and data collection, model calibration and simulation, and model experiment and analysis.
Major results of the study show that climate fluctuations between wet and dry extremes resulted in the same change of the basin discharge
regardless of the landcover condition in the basin. On the other hand, under a specified climate condition landcover change from a grassland
basin to a fully forested basin only resulted in about one half of the discharge change caused by the climate variation. Furthermore, when
landcover change occurred simultaneously with climate variation, the basin discharge change amplified significantly and became larger than
the combined discharge changes caused by the climate and landcover change alone, a result indicating a synergistic effect of landcover and
climate change on basin discharge variability.

Keywords: watershed, stream discharge, hydrological model, climate and landcover change, water resource management

1. Introduction

Stream discharge of a watershed is determined by mul-
tiple factors of local climate, landcover, topography, soil,
and geology. Among them, climate and landcover varia-
tions cause most of the observed variability in stream dis-
charge. Changes in climate and landcover alter the magni-
tude and variability of the discharge, creating not only un-
certainties in the discharge but also a void in our knowledge
of consequences in the altered surface hydrology and associ-
ated ecosystems and water resources [1,2]. To reduce these
uncertainties and minimize negative impacts of climate and
landcover changes, we need to understand the effects of cli-
mate and landcover on stream discharge of watersheds.

Landcover change in watersheds results from a variety of
natural and anthropogenic sources. Some natural changes
are often rapid such as those following wildfire or as a con-
sequence of habitat overuse by populations of some wildlife
species, whereas, plant succession driven by climate varia-
tion is slow and occurs over long periods of time. Anthro-
pogenic changes have resulted from increasing societal de-
mands for natural resources. These changes can have sub-
stantial and swift effect on land cover, altering surface hy-
drology and stream discharge [3]. For example, clearing
forests in a watershed to meet the needs of local agricul-
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tural expansion and industrial growth quickly changes land-
cover and alters spatial distribution of surface evaporation
and transpiration, resulting in rapid changes in soil hydraulic
property, ground water budget, and stream discharge of the
watershed [4].

Climate change also directly affects watershed stream
discharge. For example, change in precipitation, its tem-
poral distribution and amount, will change the stream dis-
charge. Varying temperature and wind will alter evapora-
tion and transpiration, thus partitioning the surface water use
differently to result in different surface and subsurface wa-
ter budgets and stream discharge. These effects of climate
and landcover changes on stream discharge can be evalu-
ated separately using numerical models. For instance, the
climate effect can be evaluated from comparisons of stream
discharge variability in different climate conditions with the
same landcover. The landcover change effect also can be
examined by contrasting the stream discharge variability in
different landcover under the same climate condition. These
separate effects of climate and landcover change can be fur-
ther compared to the effect of simultaneous climate and
landcover changes to reveal how interactions of climate and
landcover may produce different impact on stream discharge
of a watershed.

Landcover change effect on stream discharge also has a
unique signature from the topography and soil distribution
in the watershed. The topographic and soil distributions in
a watershed can cause some sub-catchments to contribute
more to the streamflow and discharge than the other sub-
catchments. Thus, landcover changes in those responsive
sub-catchment areas will have a larger impact on streamflow
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Figure 1. Geographical location and profile of the Ozark Highlands and the Jacks Fork River basin.

variability and discharge amount than the impact from simi-
lar changes in the other areas [5]. Identifying those sensitive
areas in a watershed is important for management decisions
and practice.

In this study, we use a numerical model and examine
the effects of climate and landcover change on stream dis-

charge variability of the Jacks Fork River basin in the Ozark
Highlands in the lower Missouri and Mississippi River basin
(figure 1). The Ozark Highlands, covering 129,500 km2

in southern Missouri and northern Arkansas, is a region
of highly diversified biological species, especially aquatic
species [6]. Aquatic habitats in the region are very sensi-
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tive to streamflow changes [7] that have occurred accom-
panying the region’s climate variation and local agricul-
tural and recreational development and anthropogenic land-
cover changes in several watersheds. These changes have
raised public concerns on local water resources and how they
should be managed.

To examine the effects of climate and landcover changes
on stream discharge in the Ozark Highlands, we use the
Jacks Fork River basin in the region as a study site (figure 1).
In the next section, we describe the Jacks Fork River basin
and its geological features, soil characteristics, surface veg-
etation, and a climate observational network. The network
was implemented and operated in 1996–2000 to collect me-
teorological data for model calibration and validation. The
model used in this study is the distributed hydrology–soil–
vegetation model developed by Wigmosta et al. [8], and has
the ability to integrate climate, topography, soil, and vegeta-
tion interactions into watershed hydrology. Details of model
physical processes are summarized in section 3. In section 4,
we describe model calibration and validation using the ob-
servation data. Numerical experiments of the model using
different climate and landcover change scenarios are exam-
ined in section 5 to disclose effects of landcover and cli-
mate change on the basin’s discharge as well as peak flow
changes. Section 6 contains conclusions.

2. Study site and data

2.1. Study site

The Jacks Fork River basin is in the southeast section of
the Ozark Highlands (figure 1), hosting the Jacks Fork River
which flows from the west to the east and joins the Current
River at Eminence, Missouri. The river channel is about
88 km in length with a total drainage area of 1030 km2. El-
evation of the basin ranges from 220 m to 486 m with an
area average of 336 m above the sea level. The riverbed is
in a valley of variable width bounded by bluffs and cliffs
averaging 60 m in height; less than 30% of the riverbed is
in smooth terrain. Summer base flow of the river is around
30 m3 s−1 [6]. Long-term average annual evapotranspiration
in the basin is 760 mm, which is more than one half of the
average annual precipitation of 1128 mm.

The basin’s geology is representative of the entire Ozark
Highlands and features flat to gently fold cherty sandstone
and cherty dolomite [6]. The karst geology allows ground-
water flow at high speed. Dye-tracing studies have sug-
gested groundwater flows across the surface basin bound-
aries [9]. The cross-basin flow affects the surface water
budget, streamflow, and the basin discharge. Although the
magnitude of the effect varies, cross-basin flow is a fea-
ture shared by most of the river basins in the Ozark High-
lands, including the Jacks Fork basin. The magnitude and
pathway of the cross-basin flow in the Jacks Fork basin are
poorly known [10]. Although the influence of the flow on
surface hydrology and stream discharge of the basin is un-
clear, analysis of the basin hydrographs has indicated that

Figure 2. Landcover distribution in the Jacks Fork River basin. The light
shading indicates grass coverage and dark shading indicates forest cover-
age. The bare soil and water surface also are shown in light shading. The
asterisks mark the locations of the two meteorological stations implemented

and used for this study.

this influence is not substantial. The effect of cross-basin
flow on a basin’s discharge is usually shown by a typical
“flat-top” basin hydrograph. This feature reflects the loss of
water through cross-basin flows [11]; when recharge reaches
a certain capacity, the groundwater flows becomes activated
and divert additional rainfall to sinks outside the basin and
prevent peaks in the basin hydrograph. Because of a lack of
such a feature in the hydrographs of the Jacks Fork River [6],
it is reasonable to treat the Jacks Fork basin as a closed basin
without losing its major hydrological features.

Landcover in the basin is composed of native forest, sa-
vanna, and glade, with scattered agricultural pastures of ex-
otic cool-season grasses. At the western edge of the Eastern
Broadleaf Forest Province [12], the basin forest consists of
short-leaf pine (Pinus echinata Mill) and mixed hardwoods
dominated by oaks (Quercus spp.). Figure 2 shows the land-
cover distribution in the basin. Soils in the basin are moder-
ate to well-drained and are moderately permeable.

2.2. Data collection

The topography data and the digital elevation model
(DEM) of the basin were derived from an USGS topograph-
ical dataset with a scale of 1 : 100,000. The grid space of the
DEM was 90 m × 90 m. We also used this DEM system to
interpolate the landcover and soil data and to discretize the
model equations for numerical computations.

Vegetation and landcover data for the basin were derived
from the USGS Landsat TM (Thematic Mapper) dataset (ac-
cessible at: http://landcover.usgs.gov/prodescription.html).
They include two types of landcover for the basin: grass and
forest (figure 2). These data, along with available in situ
observations of plant height and average canopy sizes [13],
were used to determine the basin’s vegetation properties,
such as the leaf area index (LAI). The LAI was then used
in the model to calculate the surface aerodynamic resistance
and evaporation and transpiration. Table 1 lists the LAI and
other vegetation parameters for both grass and forest in the
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warm and cold seasons and the average height of trees in the
basin.

Soil data were obtained from the U.S. Department of
Agriculture, National Soil Conservation Service [14]. Al-
though more than five groups of soils were distributed in the
basin, they originated from similar parent materials and ge-
ological processes. In this study, they were regrouped into
two categories because the basin landcover is characterized
by either grassland or forest and the landcover types specify
the soil groups in the hydrology model. Each group con-
taines soils of similar hydraulic properties. These proper-
ties in the two soil groups were derived using the method in
Rawls and Brakensiek [15].

Two sets of meteorological data were used in this study:
historic daily data of temperature and precipitation and
hourly meteorological data. The former were from the U.S.
National Weather Service station located in Arcadia, Mis-
souri, northeast of the basin. This station’s climate data were
used because of both the quality and length of its precipita-
tion and temperature records. Few data were missing from
1895 to 1998. Furthermore, the data were carefully analyzed
in previous studies [16,17] and shown to provide a consistent
description of the climate and climate variation for the re-
gion. In this study, daily precipitation and temperature from
1895 to 1998 were used to describe climate conditions and
in evaluations of regional climate change effect on the basin
discharge.

Table 1
Landcover property of the Jacks Fork River basin.

Parameters Landcover type

Grass Forest

Summer LAI (m2 m−2) 2.0 (5.0, 2.0)*

Winter LAI (m2 m−2) 0.0 (2.0, 1.0)*

Average height (m) 0.5 20.0
Albedo (%) 15 10
Minimum stomatal resistance (s cm−1) 1.4 5.1
Maximum stomatal resistance (s cm−1) 50 50

* The two numbers of LAI are canopy and ground cover vegetation leaf area
indices, respectively.

Hourly meteorological data of precipitation, temperature,
wind, relative humidity, and solar and terrestrial radiation
near the surface, required to drive the watershed model, were
obtained from three sources. During 1996–97, two Belfort
mechanical rain gauges were installed in the basin to mea-
sure hourly precipitation, rain and snow. Their locations are
shown by the asterisks in figure 2, and were selected pri-
marily because of site accessibility. Data record sheets from
the gauges were collected and digitized weekly. Hourly val-
ues of the other meteorological variables for this period were
obtained from an automated weather station in the Missouri
Climate Extension Network (MCEN) located 80 km north-
east of the basin. Beginning in 1998, two automated weather
stations were installed next to the mechanical gauges. The
mechanical gauges continued collecting snow data, which
could not be measured by the automated weather stations.
Data from the automated stations inside the basin were com-
pared to the data from the MCEN station in 1998–2000.
The result showed consistent variations of the meteorologi-
cal variables, as expected because of their similar landscape,
landcover, and climate. The comparison result supported the
use of the MCEN station data in 1996–97 as estimates of the
meteorological conditions inside the Jacks Fork River basin.
These data formed a complete hourly meteorological dataset
from 1996 to 2000 and was used to calibrate the watershed
model and also in model validation and experiments.

3. The watershed model

The distributed hydrology–soil–vegetation model of Wig-
mosta et al. [8] was used in this study. The model uses a grid
domain. Each grid has four vertical “layers”: two soil layers
and two vegetation layers (figure 3). The upper rooting zone
is the topsoil layer and contains roots of grass, shrubs, and
small trees. The lower rooting zone is the second soil layer
and contains the deep portion of roots of tall trees. Below
the lower rooting zone is a saturation zone where ground-
water exchanges between grids. Above the ground surface
are two vegetation layers, overstory and understory which
contain the grass and forest canopy, respectively.

Figure 3. Schematic of the distributed hydrology–vegetation model [8], Copyright [1994] American Geophysical Union, reproduced/modified by permis-
sion of American Geophysical Union.
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The hydrological processes in the model are as follows.
Rain falling through the two vegetation layers is intercepted
by leaves to a specified maximum interception amount de-
fined as a function of LAI [18]: 10−4LAIc × f for the forest
region with canopy fraction f , and 10−4LAIg for ground
cover vegetation. The subscripts c and g in LAI are for
canopy and ground, respectively. The throughfall or rain-
fall reaching the ground infiltrates the soil. The model as-
sumes that the infiltration continues until the upper rooting
zone is saturated. Any excess rainfall or snowmelt forms
overland flow. This assumption is valid for the Jacks Fork
basin where, as discussed previously, the soils in the upper
rooting zone are permeable and soils in forest areas have a
large volume of micro-pore/channels which allow fast water
movement in soils.

Soil water in the upper rooting zone further percolates to
the lower rooting zone and to the saturation zone to change
the water table at a grid. The vertical movement of soil wa-
ter in the rooting zones is calculated using Darcy’s law with
the assumption of a unit hydraulic gradient. When the up-
per rooting zone and the surface are dry, desorption occurs
to move water from the rooting zone to support evaporation
and dry the soil layers. Soil water movement between grid
cells only occurs in the saturation zone, where lateral water
movement between grid cells affects spatial variation in wa-
ter table and consequently soil water content and the surface
evaporation.

Surface evaporation and plant transpiration comprise the
water sink in the model. Evaporation of intercepted rain on
leaves is at the potential rate. After the intercepted rain is
evaporated, plant transpiration starts and is calculated using
a Penman–Monteith formula. At the ground, evaporation
from the bare soil surface varies as a function of soil wet-
ness: on wet soil surfaces, evaporation is at the potential
rate; when soil moisture is depleted, the rate of evaporation
falls below the potential rate, and evaporation continues at
the expense of soil moisture via the desorption process. The
methods calculating the rates of evaporation and desorption
are described in detail in [8].

The stream discharge is the sum of the saturation excess
overland flow and the return flow of the ground water. Once
into the stream channel, the surface water is routed through
the channel network to the basin outlet. The simple channel-
routing method in the TOPMODEL is adopted using a rout-
ing speed derived from the longest channel distance and an
estimate of the streamflow velocity of 0.94 m s−1 [19].

A unique feature of this hydrologic model is its ability
to treat cold season snow accumulation and ablation and
explicitly include snow-melting effect on the annual cycle
of the surface and ground water budgets, thus allowing the
model to simulate multiyear variations in basin hydrology
and making the model unique for studying basin discharge
variability to climate and landcover changes. Details of
the methods and formula in calculations of snow accumula-
tion/ablation and water transport and exchange in the model
are also presented in [8] and are not repeated here.

4. Model calibration and validation

We calibrated the model to the Jacks Fork basin using
data from May 1, 1996, to September 30, 1998, and then,
validated the model by comparing model simulation with
observation from October 1, 1998, to September 30, 2000.
The model integration step was one-hour. In the model
calibration and validation, the model environment was de-
scribed by the topography, soil, and landcover data interpo-
lated to the 90 m × 90 m grid system covering the basin.
Seasonal variation of vegetation cover was treated in the
model by changing LAI values. Two sets of LAI values for
both the canopy and grass were used for the warm season
(April 1–September 30) and the cold season (October 1–
March 31), and they were determined from landcover ob-
servations (Nigh, 1988) and given in table 1. The model run
started with meteorological conditions observed on May 1,
1996. Observed soil moisture at the two sites in the basin
(see figure 2) were averaged and used as the initial soil mois-
ture across the basin.

After the initial step, meteorological conditions derived
from the hourly data discussed in section 2.2 were used to
drive the model. From 1996 to 1997, the data from MCEN
and the averaged precipitation from the two rain gauges were
used. From 1998–2000, the average of the two automated
stations’ data and the snow data from the two gauges were
used to describe the meteorological condition at all model
grids. This uniform meteorological condition in the basin
was used primarily because of the sparse coverage by obser-
vation stations. Although there have been on-going devel-
opments of high-resolution rainfall data covering the basin
based on, for example, radar observations, those data are,
however, limited to the warm season and could not be used
for this study yet.

In calibrating the model, we compared the modeled daily
discharge of the basin from May 1, 1996 to September 30,
1998, with the observed daily discharge at the USGS Gauge
(07066000) at the confluence of the Jacks Fork River (fig-
ure 1). The discharge data were obtained from the USGS
Water Resources Office at Rolla, Missouri. The model para-
meter values were given in table 2. After the calibration, the
model was validated based on the basin discharge from Oc-

Table 2
Model parameter values.

Model parameters Landcover type

Forest Grass

Upper rooting zone depth (m) 0.2 0.2
Lower rooting zone depth (m) 1.3 0.8
Total soil layer depth (m) 3.2 2.8
Soil porosity (m3 m−3) 0.47 0.47
Saturation hydraulic conductivity (m hour−1) 1.0 1.0
Decay rate of saturation conductivity 0.05 0.05
Vertical saturated hydraulic conductivity (zone 1)

(m hour−1)

0.15 0.053

Vertical saturated hydraulic conductivity (zone 2)
(m hour−1)

0.10 0.053



14 Q. Hu et al. / Effects of climate and landcover change on stream discharge

Figure 4. (a) Model calibration and observed variations of daily discharge from the Jacks Fork basin from October 1, 1996 to September 30, 1998.
(b) Model validation and observed variations of daily discharge from the Jacks Fork basin from October 1, 1998 to September 30, 2000.

tober 1, 1998 to September 30, 2000. The calibration and the
validation result are shown in figures 4a and 4b, respectively.

As shown in figure 4, the model calibration has dis-
charges in good agreement with the observed. The two-year
model validation from 1998 to 2000 also showed a close
match with the observation. The model discharge has cap-
tured both the peak flows in the heavy rainfall period from
March through May and the low flow period in the summer
months. For the annual average daily discharge, the root
mean square error (RMSE) is 0.69 mm in the calibration pe-
riod and is 0.70 mm in the validation period. The corre-
lation coefficient of the variation in simulated and observed
daily discharge is 0.9 in the calibration period and 0.88 in the
validation period. Although the availability of observation
data limited calibration for a longer period, these calibration
and validation results provide a reasonable support for the
model’s ability to describe seasonal and annual variations in
stream discharge of the Jacks Fork River basin. This ability
allowed us to apply the model and evaluate basin discharge
variation in response to landcover and climate changes.

Before we apply the model to numerical experiments and
analyses, it is necessary to indicate that the model does not
describe physiological interactions of plant growth and its

environment. Leaf area index is used in the model to de-
scribe the capacity of plant canopy in warm and cold sea-
sons. This capacity defines the potential of evapotranspi-
ration by plants in the model (Penman–Monteith formula).
However, because the evapotranspiration affects the soil
moisture and its variation also feedbacks to the transpiration,
interactions of plant transpiration with temperature and rain-
fall (the climate) are captured in the model. By describing
these interactions the model can describe major hydrological
consequences of landcover and climate change.

5. Numerical analyses and results

5.1. Landcover and climate change scenarios

To evaluate basin discharge response to climate and land-
cover changes, we first developed scenarios of local climate
and landcover changes. For landcover change, we replaced
portions of the forest area in the basin with grass. Some
of these changes are actually occurring in the basin as a re-
sult of forest conversion to pasture or cropland. To avoid
random changes of the landcover, we replaced the forest
by grass in different slope orientations. As a result, there
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were six landcover patterns in our landcover change exper-
iments: (1) change forest to grass in the north- and east-
facing slopes, (2) in south- and west-facing slopes, (3) in
west- and north-facing slopes, and (4) in north-, east-, and
south-facing slopes of orientation, resulting in a 29%, 36%,
26%, and 48% reduction of current basin forest coverage,
respectively. Two additional extremes also were included in
the study: (5) converting all grass to forest, and (6) convert-
ing all forest to grass.

Climate change scenarios were developed based on our
analyses of the region’s climate in the last 104 years. The
analysis used daily temperature and precipitation data from
the Arcadia station in Arcadia, Missouri (see section 2.2).
These data showed variations in precipitation and temper-
ature of various timescales, and the annual means of the
last 104 years data showed fluctuations around fairly steady
“climatic average” of temperature and precipitation [16,20],
a result also consistent with that reported in Karl et al. [21],
who examined the climatic trends in various regions in the
contiguous United States.

When there is no significant climatic trend, the natural
variability of different time scales describes the region’s
climate variations. Among the natural variability, we fo-
cused on decadal to multidecadal scales. In this spectrum,
a quasi 20-year variation dominates the annual precipita-
tion change [16,22]. Based on these regional climate sta-
tistics, we constructed precipitation change scenarios for
this study. Specifically, we calculated the standard devia-
tion of the 20-year precipitation variation from the 104-year
mean, and added one standard deviation to (or subtracted one
from) the average annual precipitation in each of the study

years (1996–2000) to obtain the wet (or dry) climate condi-
tion. The one-standard-deviation of the 20-year cycle was
246 mm relative to the 104-year annual mean of 1128 mm.
Finally, the normalized departures of the annual precipita-
tion in the study years from its five-year mean were added to
the constructed wet (or dry) year mean to yield the wet (or
dry) precipitation time series, which represented the wet and
dry climate in the region’s 20-year precipitation cycle.

Because temperature had no clear trend and no signifi-
cant variability of period longer than eight years [20], we
used the observed temperature from 1996–2000 for both the
constructed wet and dry climate. This method was relevant
also because the mean temperature of the five study years
was close to the climate mean. For the other meteorological
quantities in the scenarios, e.g., wind and radiation, we used
the observed values in the study years. Using those values in
the scenarios was justified by our analysis of NCEP-NCAR
(National Center for Environmental Prediction – National
Center for Atmospheric Research) reanalysis surface wind
data from 1958–98, which showed no significant decadal
scale variations in the study region.

The constructed wet and dry climate and the landcover
change scenarios previously described were combined to
form an array of environmental conditions that were used
to drive the watershed model. The model’s simulation re-
sults were then evaluated for variations in stream discharge
of the Jacks Fork basin. In this array, each landcover change
was used in three climate conditions, current (CUR), wet
(WET) and dry (DRY). These experiments were listed in the
first column of table 3. Each experiment’s name contains
two parts; the first part is for landcover: “CNTRL” is for

Table 3
A summary of model experiment results. CNTRL-CUR was the control run using the observed land-cover and meteorological
conditions. CNTRL-WET was an experiment using observed meteorological condition and the wet climate scenario, and
CNTRL-DRY was similar to CNTRL-WET but using the dry climate scenario. The other experiments used different land-
cover with wet (WET) or dry (DRY) climate scenario. The number in the parentheses showed percentage of loss of forest out

of the current forest coverage resulting from each land-cover change scenario (see text for details).

Experiment name Discharge (mm/day)

Cold season Warm season Annual average (wet–dry) Maximum Minimum

CNTRL-CUR 1.80 1.10 1.45 9.35 0.48
CNTRL-WET 2.61 1.58 2.10 13.64 0.60
CNTRL-DRY 0.93 0.73 0.83 (1.27 = 2.10−0.83) 5.17 0.37

EXP1-WET (48) 3.08 1.76 2.42 15.13 0.81
EXP1-DRY (48) 1.40 0.87 1.13 (1.29) 6.91 0.44

EXP2-WET (36) 2.96 1.71 2.34 14.50 0.76
EXP2-DRY (36) 1.27 0.84 1.05 (1.29) 6.42 0.43

EXP3-WET (29) 2.90 1.68 2.29 14.26 0.73
EXP3-DRY (29) 1.21 0.81 1.01 (1.28) 6.27 0.42

EXP4-WET (26) 2.86 1.68 2.27 14.09 0.72
EXP4-DRY (26) 1.17 0.81 0.99 (1.28) 6.11 0.42

EXP5-WET (full-forest) 2.38 1.51 1.94 13.57 0.49
EXP5-DRY (full-forest) 0.74 0.64 0.69 (1.25) 4.39 0.28

EXP6-WET (full-grass) 3.37 1.88 2.62 16.69 0.94
EXP6-DRY (full-grass) 1.69 0.97 1.33 (1.29) 7.82 0.49

EXP6-CNTRL (full-grass) 2.58 1.40 1.99 11.97 0.69
EXP5-CNTRL (full-forest) 1.55 1.02 1.29 (0.70) 9.03 0.38
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currently observed landcover and “EXPn” for nth landcover
pattern, and the second part for climate, e.g., CUR, WET,
and DRY. The number in the parentheses by the experiment
name in table 3 indicates the percentage of current basin for-
est converted to grassland in that experiment. Model topog-
raphy and soil distribution and hydraulic parameters in these
experiments were the same as that used in the calibration and
validation.

5.2. Numerical experiment results

In table 3, columns 2 to 4 contain model results of cold
season, warm season, and annual discharge of the Jacks Fork
basin normalized by its area, respectively. The average is
over the four water years from May 1, 1996 to September 30,
2000. The last two columns are the maximum and minimum
discharge rate, respectively. The former of the two is cal-
culated from the average of the 10 largest discharge events,
representing the peak flow or “flood flow” in the basin, and
the latter of the two from the average of the 200 smallest
daily discharges, representing the minimum flow.

In each pair of the wet and dry experiments, e.g., EXP1-
WET and EXP1-DRY (separated from other pairs by a blank
row), the landcover in the basin is the same. The difference
in the results of the pair of experiments thus deciphers cli-
mate effect on the basin discharge. The landcover is different
between the pairs of the experiments. Thus, differences be-
tween the pairs of experiments depict landcover effects on
the discharge. Because the differences between each pair of
experiments and the control run disclose the combined ef-
fect of climate and landcover change on stream discharge,
their contrasts with the effect of sole landcover change of-
fer the information of the synergistic effect of landcover and
climate change on the basin discharge.

EXP1 to EXP4 in table 3 show that the more forest reduc-
tion (less forest coverage), the larger stream discharge the
basin has. This is particularly clear from the difference be-
tween the two extreme cases, EXP5 and EXP6. Their differ-
ence indicates that the forest evapotranspiration effectively
removes soil water and reduces the stream discharge by in-
creasing soil regulation on surface runoff.

Climate effect on basin discharge is revealed by the dif-
ferences between the discharge rates in the wet and dry cli-
mates, and is shown by the numbers inside the parentheses
in column 4 of table 3. It is intriguing that these numbers
are similar (∼1.3 mm day−1), indicating a nearly constant
climatic effect on the range of the basin discharge variations
independent of the landcover condition. This result suggests
that the climate variability defines the range and magnitude
of basin discharge variation regardless of the basin’s land-
cover. Although different landcover partitions precipitation
differently to affect the basin discharge, this effect is rela-
tively small and its maximum impact on the basin discharge
is 0.7 mm day−1, only a little over a half of the climate im-
pact (see the last two rows of column 4). This nearly invari-
ant ratio of 0.7 vs. 1.3 (∼1 : 2) of the effects of landcover
vs. climate on changes of the Jacks Fork basin discharge is

a unique quantity capturing the relative magnitude of these
effects and the response limit of the basin discharge to either
the climate or the landcover change while the other variables
are fixed. We speculate this ratio to be different for basins
of different sizes and in different climate zones and may be
used to characterize the climate and landcover forcing on
stream discharge of basins and watersheds.

When landcover change occurs simultaneously with cli-
mate change, these changes affect the basin discharge quite
differently from their individual effect (figure 5). Each panel
in figure 5 shows the basin discharge change in percentage
relative to a reference discharge for the experiment. Specif-
ically, figure 5a shows the discharge change in response to
basin landcover changes relative to the basin discharge at
the current landcover in the wet climate condition, and fig-
ure 5b shows the change in response to similar landcover
change but in the dry climate. Figures 5c and 5d show the
changes in response to both landcover and climate changes
from the current landcover and climate, and they are differ-
ent in that figure 5c shows the changes when the climate
becomes wetter whereas figure 5d shows the changes when
the climate becomes drier. In addition, the “CNTRL-WET”
(“CNTRL-DRY”) experiment in figure 5c (5d) shows the
discharge changes in response to climate change to become
wetter (drier) relative to the current climate.

The decrease of the discharge from the left to the right in
the panels shows that in both wet and dry climate conditions
the basin has smaller discharge when it has less grass and
more forest coverage. For instance, in wet climate (figure 5a)
the basin discharge in the cold season (open bars) changed
from an increase of 29% in a grassland basin (EXP6-WET
in figure 5a) to a decrease of 9% in a fully forested basin
(EXP5-WET). In the warm season (solid bars), this change
is from an increase of 19% in a grassland basin to a decrease
of 5% in a forested basin. These changes are even more
dramatic in dry climate (figure 5b). In the cold season, the
change is from an increase of 82% in a grassland basin to a
decrease of 21% in a forested basin, and, in the warm sea-
son, it changed from an increase of 33% to a decrease of
12% corresponding to the same landcover change. A simi-
lar decrease of basin discharge also is shown in figures 5c
and 5d when basin grassland coverage shrinks and forest
area expands. This decrease again shows the depletion in
soil water and decrease in basin discharge caused by forest
expansion.

A further comparison of the basin discharge change be-
tween figures 5a and 5c (wet), and for the same reason fig-
ures 5b and 5d (dry), indicates that the discharge changes
are much greater in response to both landcover and climate
changes (figures 5c and 5d) than discharge change resulting
from either landcover change (figures 5a and 5b) or climate
change alone (the “CNTRL-WET” and “CNTRL-DRY” in
figures 5c and 5d, respectively). For example, in the wet
climate, the cold season discharge increases by 29% for a
grassland basin (open bar in figure 5a). On the other hand, if
only the climate changes from the current condition to being
wetter, the basin discharge will increase by 45% (open bar
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Figure 5. Percentage changes of daily basin discharge from model experiments. (a) Results from experiments with different landcover change but fixed wet
climate; (b) same as in (a) but in dry climate. (c) Results from experiments with both landcover and climate changes, with climate getting wetter; (d) same
as in (c) but for climate change to be drier. Both (c) and (d) also contain the result from experiments with climate change alone with fixed landcover at the

current condition, CNTRL-WET and CNTRL-DRY, respectively.

in the “CNTRL-WET” result in figure 5c). However, with
simultaneous changes of the landcover to grassland and cli-
mate to wet, we find a stunning increase of 87% in basin
discharge (open bar in the “EXP6-WET” result in figure 5c),
and this increase is greater than the sum of the individual
discharge change due to climate or landcover alone, i.e.,
87 > 45 + 29. So, the absolute magnitude of discharge
change resulting from simultaneous climate and landcover

change is greater than the sum of the changes in response to
individual landcover or climate change. This non-additive
feature in the results indicates a strong synergistic or non-
linear effect on basin discharge resulting from interactions
of landcover and climate changes. A similar strong syner-
gistic effect of landcover change on the basin discharge also
is shown in the experiments using the dry climate scenario
(figure 5d).
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Similar conclusions have been obtained from analysis of
the warm season and annual discharge changes in the model
experiments. The cold season results have the largest syner-
gistic effect on basin discharge because it is the wetter sea-
son of a year in the study region.

We also examined the effect of landcover and climate
change on the basin’s peak discharge (flood flow) and min-
imum discharge using the results presented in figure 5.
A comparison of the peak flow change between the differ-
ent experiments showed a similar effect of landcover change
on the peak flow when the basin forest is reduced and a
dominant climate effect on peak flow when the basin for-
est expended. In an extreme case (EXP6-WET, figure 5c),
the peak increased by nearly 80% from the current amount.
Such a large increase of the peak flow could have signifi-
cant impacts on basin’s stream morphology, particularly in
flat riverbed sections [1], the aquatic and terrestrial riparian
habitats [7].

As equally significant as the increase of the peak flow
is the large decrease of minimum flow in dry climate from
a forested basin (as an extreme example). A decrease of
more than 41% discharge from the current minimum flow
(EXP5-DRY in figure 5d) could interrupt the streamflow in
dry months (see figure 4) and have the potential to disrupt
life cycles of some aquatic as well as terrestrial species.
Though some of these extreme cases, like this dry climate
with a forested basin, may not be sustainable in reality, they
help establish a comprehensive perspective of the effects of
climate and landcover change on the basin discharge vari-
ability.

6. Summary and conclusions

We used the Jacks Fork River basin as a research site to
understand the effects of landcover and climate change on
basin discharge in the Ozark Highlands environment. We
gained such understanding from analyses of results of a dis-
tributed hydrology–soil–vegetation model. The model was
calibrated using observed meteorological and discharge data
from 1996 to 1998 in the Jacks Fork basin, and further val-
idated using data from 1998 to 2000. The calibrated and
validated results demonstrated that the model could be used
to simulate the surface hydrology and discharge in the Jacks
Fork River basin.

With the established accuracy, the model was used in
numerical experiments to examine and quantify basin dis-
charge responses to basin’s landcover and climate change.
In these experiments, the climate change scenarios were con-
structed to represent the observed multidecadal oscillation of
the region’s climate, characterizing alternations of epochs of
relatively dry and wet decades in the last century. Effects of
the landcover and climate change on basin discharge were
evaluated separately, and then a synergistic effect of land-
cover and climate change on basin discharge was revealed
through synthesized analyses.

In evaluating the separate effect of landcover and climate
change, we found that the maximum change of the stream

discharge resulting from landcover change, from a grass-
land basin to a fully forested basin, is 0.7 mm day−1. This
change is about a half of 1.3 mm day−1 caused by climate
change alone from the extremely wet to extremely dry condi-
tion in the multidecadal variation. We further found that the
discharge change caused by the climate variation is nearly
a constant regardless of landcover conditions in the basin.
This finding suggests that the climate variability specifies
the range of the basin discharge variation and the landcover
condition in the basin modifies the basin discharge by parti-
tioning the precipitation differently.

When landcover change occurred simultaneously with
climate change, the landcover effect on basin discharge am-
plified significantly owing to the nonlinear nature of evap-
oration and transpiration and related surface as well as soil
hydrological processes in reaction to different climate con-
ditions. In particular, accompanying the climate change to
become wetter, the landcover change from a forested basin
to a grassland basin caused a stream discharge change twice
as large as the discharge change resulting from sole land-
cover change in the same wet climate condition. This result
reveals a critical role of the synergistic effect of landcover
change on basin discharge when occurring concurrently with
climate variations.

A similar synergistic effect of the landcover change was
found to amplify the peak flow, or flood flow, in the Jacks
Fork River basin, causing an increase of nearly 80% of peak
flows above the present peak flow in wet climate when forest
was cleared, or 62% increase of the peak flow when nearly a
half of the current forest was cleared. These results suggest
that streamflow changes resulting from the landcover change
and climate change could cause significant changes of the
basin’s surface hydrology and, thus, the aquatic as well as
terrestrial habitats in the basin.

Knowledge gained from this study not only improves our
understanding of the effects of climate and landcover change
on stream discharge in the Jacks Fork River basin, but also,
from application perspective, assist watershed management
decisions for the Ozark Highlands region in the changing
climate.
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