14 research outputs found

    Superconductivity devices: Commercial use of space

    Get PDF
    A YBCO thick film containing 20 percent Ag2O with a T(sub c) of 86.8 K and J(sub c) of 108 A/sq cm was obtained. The film was fabricated by a two-step firing process, i.e., firing the film at 1000 C for 10 minutes and annealing at 970 C for 30 minutes. The two-step firing process, however, was not suitable for the multiple-lead YBCO sample due to the formation of the 211 green phase at 1000 C in the multiple-lead YBCO sample. A BSCCO thick film printed on a MgO coated MSZ substrate and fired at 845 C for 2 hours exhibited a superconducting behavior at 89 K. Because of its porous microstructure, the critical current density of the BSCCO thick film was limited. This report also includes the results of the YBCO and BSCCO materials used as oxide electrodes for ferroelectric materials. The YBCO electroded PLZT showed higher remanent polarization and coercive field than the sample electroded with silver paste. A higher Curie temperature for the PLZT was obtained from the YBCO electroded sample. The BSCCO electroded sample, however, exhibited the same Curie temperature as that of a silver electroded sample. Dissipation factors of the ferroelectric samples increased when the oxide electrode was applied

    Low dielectric loss ceramics in the Mg₄Nb₂O₉-ZnAl₂O₄-TiO₂ ternary system

    No full text
    Abstract This study used a traditional solid-state reaction method to prepare a series of composite ceramics in the 0.7Mg₄Nb₂O₉-(0.3-x)ZnAl₂O₄-xTiO₂ ternary system. Crystalline phases and microstructure of Mg₄Nb₂O₉-ZnAl₂O₄-TiO₂ dielectric ceramic composites were investigated and correlated with the relevant dielectric properties. It was observed that the addition of Ti⁴⁺ substituted Nb⁵⁺ in the Mg₄Nb₂O₉ structure, which promoted the decomposition of Mg₄Nb₂O₉ to form the second phase, Mg₅Nb₄O₁₅, during sintering. The synergistic effect of ZnAl₂O₄-TiO₂ co-doping promoted the Mg₄Nb₂O₉ ceramic densification. The sample (0.7Mg₄Nb₂O₉-(0.3-x)ZnAl₂O₄-xTiO₂) with x = 0.15−0.2 exhibited dielectric constants of 13–14, larger than those of ZnAl₂O₄, Mg₄Nb₂O₉ and Mg₅Nb₄O₁₅, due to the NbO₆ octahedra distortion resulting from the substitution of Al³⁺/Ti⁴⁺ for Nb⁵⁺ in Mg₄Nb₂O₉ and Mg₅Nb₄O₁₅. The long-range order of the NbO₆ octahedra was enhanced by co-doping ZnAl₂O₄ and TiO₂, thereby enhancing the Qxf value. A dielectric constant of 13.1, Qxf value of 366,000 GHz and a τf of −60.8 ppm/°C were obtained from 1300 °C sintered 0.7Mg₄Nb₂O₉-0.15ZnAl₂O₄-0.15TiO₂. These results show that 0.7Mg₄Nb₂O₉-0.15 ZnAl₂O₄-0.15TiO₂ ceramic is a good candidate for microwave electronic device applications

    Tape casting system for ULTCCs to fabricate multilayer and multimaterial 3D electronic packages with embedded electrodes

    No full text
    Abstract A 3D multilayer structure built by two ultra‐low temperature co‐fired ceramic (ULTCC) compositions with silver embedded electrodes are co‐fired at a temperature of 450°C. The 3D multilayer module is prepared by laminating the ULTCC green tapes with a new binder system, which organics can be completely burned out at temperature of 250°C before the sintering of the ULTCC 3D modulus. High‐density microstructures are achieved for the sintered module. In this study, the ULTCC feasible binder system is introduced. Also, ULTCC multilayers and multimaterial structures with surface and embedded silver electrodes are fabricated. This research opens up a new horizon for fabrication of electroceramic devices with embedded electrodes in multimaterial devices

    Triage of Atypical Glandular Cell by SOX1 and POU4F3 Methylation: A Taiwanese Gynecologic Oncology Group (TGOG) Study.

    No full text
    Invasive procedures including loop electrosurgical excision, cervical conization, and endometrial sampling are often recommended when atypical glandular cells (AGC) are detected on Pap smear with unsatisfactory colposcopy. These invasive procedures may result in patient anxiety, increased medical expense, and increasing the risk of preterm delivery in subsequent pregnancies. This study was performed to assess methylation biomarkers in the triage of AGC on Pap smear for invasive procedures.We conducted a multicenter study in 13 medical centers in Taiwan from May 2012 to May 2014. A total of 55 samples diagnosed "AGC not otherwise specified" (AGC-NOS) were included. All patients with AGC underwent colposcopy, cervical biopsy, endometrial sampling, and conization if indicated. Multiplex quantitative methylation-specific polymerase chain reaction (QMSPCR) was performed. Sensitivity, specificity, and accuracy were calculated for detecting CIN3+ and endometrial complex hyperplasia.In 55 patients with AGC, the sensitivity for methylated (m) SOX1m, PAX1 m, ZNF582m,PTPRRm, AJAP1m, HS3ST2m, and POU4F3m for detecting CIN3+ and endometrial complex hyperplasia lesions was 100, 86, 71, 86, 86, 57, and 100%; specificity was 67, 79, 85, 50, 52, 96, and 52%, respectively. Testing for high risk-HPV had a sensitivity of 57% and specificity of 75% for CIN3+ and endometrial complex hyperplasia lesions.Methylated (m) SOX1m and POU4F3m could be new methylation biomarkers for detection of CIN3+ and endometrial complex hyperplasia in AGC. Women with AGC and positive SOX1m / POU4F3m, colposcopy, cervical conization or endometrial sampling should be considered
    corecore