5 research outputs found

    Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic)

    No full text
    International audienceIn two Czech catchments covered by Norway spruce forests, the MAGIC model was used to simulate annual stream water and soil chemistry for the period 1851?2030. These two sites represent geochemical end-members of ecosystem sensitivity to acidification (acid-sensitive granitic Lysina catchment vs. acid-resistant serpentinitic Pluhuv Bor catchment). Although the total deposition of sulphur to the catchments declined by 75% between 1990 and 2002, the recovery of stream water pH was relatively small over this period. At Lysina, the annual discharge-weighted mean pH of stream water increased only from 3.92 to 4.01, although SO4 concentration declined very sharply from 570 ?eq L?1 in 1990 to 150 ?eq L?1 in 2002. Stream water buffering was caused mainly by dissociation of organic acids. At Pluhuv Bor, the annual mean pH varied inversely with the annual discharge. Stream water concentrations of SO4 declined dramatically at Pluhuv Bor, from 1040 ?eq L?1 in 1992 to 220 ?eq L?1 in 2002. Using atmospheric deposition as specified in the Gothenburg Protocol, the model predicts that, at Lysina, stream water pH will increase to 4.3 and soil base saturation will increase to 6.0% by 2030 (from 5.6% in 2002); corresponding pre-industrial stream water pH was simulated to be 5.5 and soil base saturation to be 25%. At Pluhuv Bor, the pre-industrial pH was estimated to be 7.2 and the corresponding base saturation was 94%. Large anthropogenic acidification in the 20th century caused only a small decline in pH (to 6.9) and base saturation (to 88%). Simulations in accordance with the Gothenburg Protocol predict that the pH should increase by 0.2 pH units and the base saturation by 1% by 2030. Under this protocol, critical loads of atmospheric deposition for SO4 and NO3 will not be exceeded at Pluhuv Bor but will be exceeded at Lysina. Keywords: MAGIC model, catchment, critical loads, Gothenburg Protocol, soil and water acidification, granite, serpentinite, Czech Republi

    The response of a small stream in the Lesni potok forested catchment, central Czech Republic, to a short-term in-stream acidification

    Get PDF
    International audienceLesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HC1) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and Mg and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4,542 meq Ca, 1,184 meq Mg, and 2,329 meq Al over a 45 m long and 1 m wide stream segment; smaller amounts of Be, Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F? occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42-; but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al, respectively, in a 4-hour recovery period. Desorption of SO42-; occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil?soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream pediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data. Keywords: Al, Ca, Mg, base cations, acid-neutralisation, stream acidification, recovery, stream sediment, experiment, modelling, adsorption, desorption, adsorption, Czech Republic, Lesni Poto

    The response of a small stream in the Lesni potok forested catchment, central Czech Republic, to a short-term in-stream acidification

    No full text
    International audienceLesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HC1) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and Mg and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4,542 meq Ca, 1,184 meq Mg, and 2,329 meq Al over a 45 m long and 1 m wide stream segment; smaller amounts of Be, Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F? occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42-; but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al, respectively, in a 4-hour recovery period. Desorption of SO42-; occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil?soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream pediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data. Keywords: Al, Ca, Mg, base cations, acid-neutralisation, stream acidification, recovery, stream sediment, experiment, modelling, adsorption, desorption, adsorption, Czech Republic, Lesni Poto
    corecore