792 research outputs found

    Piezoelectric actuation for microfluidic cell sorting

    Get PDF
    Since the field of microfluidics is vastly improving and developing, and piezoelectric actuators offer good control on a micrometer scale, this work was created as a combination of the two. A microfluidic chip with an embedded piezoelectric actuator was designed and constructed using polydimethylsiloxane as the main material. The chip was experimented on by varying both mechanical and electrical properties. Performance dependencies of volumetric flow rate and input waveform were described and analyzed. Moreover, beneficial phenomena were discovered and analyzed using high-speed microscopy and digital image analysis. A situation where control of microfluidic flow direction could potentially be available was achieved. Other promising results showed new potential applications for piezoelectric actuation in microfluidic systems

    Construction and testing of the optical bench for LISA pathfinder

    Get PDF
    eLISA is a space mission designed to measure gravitational radiation over a frequency range of 0.1–100 mHz (European Space Agency LISA Assessment Study Report 2011). It uses laser interferometry to measure changes of order 10pm/Hz10\,{\rm pm /\sqrt{Hz}} in the separation of inertial test masses housed in spacecraft separated by 1 million km. LISA Pathfinder (LPF) is a technology demonstrator mission that will test the key eLISA technologies of inertial test masses monitored by laser interferometry in a drag-free spacecraft. The optical bench that provides the interferometry for LPF must meet a number of stringent requirements: the optical path must be stable at the few pm/Hz{\rm pm /\sqrt{Hz}} level; it must direct the optical beams onto the inertial masses with an accuracy of better than ±25 μm, and it must be robust enough not only to survive launch vibrations but to achieve full performance after launch. In this paper we describe the construction and testing of the flight optical bench for LISA Pathfinder that meets all the design requirements

    CMB observations with the Jodrell Bank - IAC interferometer at 33 GHz

    Get PDF
    The paper presents the first results obtained with the Jodrell Bank - IAC two-element 33 GHz interferometer. The instrument was designed to measure the level of the Cosmic Microwave Background (CMB) fluctuations at angular scales of 1 - 2 degrees. The observations analyzed here were taken in a strip of the sky at Dec = +41 deg with an element separation of 16.7 lambda, which gives a maximum sensitivity to ~1.6 deg structures on the sky. The data processing and calibration of the instrument are described. The sensitivity achieved in each of the two channels is 7 micro K per resolution element. A reconstruction of the sky at Dec = +41 deg using a maximum entropy method shows the presence of structure at a high level of significance. A likelihood analysis, assuming a flat CMB spatial power spectrum, gives a best estimate of the level of CMB fluctuations of Delta Tl = 43 (+13,-12) micro K for the range l = 109 +/- 19; the main uncertainty in this result arises from sample variance. We consider that the contamination from the Galaxy is small. These results represent a new determination of the CMB power spectrum on angular scales where previous results show a large scatter; our new results are in agreement with the theoretical predictions of the standard inflationary cold dark matter models.Comment: 11 pages, 11 figures. Web site at http://www.jb.man.ac.uk/research/cmb/ Accepted for publication in MNRA

    New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments

    Get PDF
    We present observations at 10 and 15 GHz taken with the Tenerife experiments in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK for the 10 and the 15 GHz data, respectively. After subtraction of the prediction of known radio-sources, the analysis of the data at 15 GHz at high Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32 microK. In the case of a Harrison-Zeldovich spectrum for the primordial fluctuations, a likelihood analysis shows that this signal corresponds to a quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our previous results at Dec.+=40 degrees and with the results of the COBE DMR. There is clear evidence for the presence of individual features in the RA range 190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A preliminary comparison between our results and COBE DMR predictions for the Tenerife experiments clearly indicates the presence of individual features common to both. The constancy in amplitude over such a large range in frequency (10-90 GHz) is strongly indicative of an intrinsic cosmological origin for these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated postscript figures

    QUIJOTE Scientific Results. II. Polarisation Measurements of the Microwave Emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44

    Full text link
    We present Q-U-I JOint TEnerife (QUIJOTE) intensity and polarisation maps at 10-20 GHz covering a region along the Galactic plane 24<l<45 deg, |b|<8 deg. These maps result from 210 h of data, have a sensitivity in polarisation of ~40 muK/beam and an angular resolution of ~1 deg. Our intensity data are crucial to confirm the presence of anomalous microwave emission (AME) towards the two molecular complexes W43 (22 sigma) and W47 (8 sigma). We also detect at high significance (6 sigma) AME associated with W44, the first clear detection of this emission towards a SNR. The new QUIJOTE polarisation data, in combination with WMAP, are essential to: i) Determine the spectral index of the synchrotron emission in W44, beta_sync =-0.62 +/-0.03, in good agreement with the value inferred from the intensity spectrum once a free-free component is included in the fit. ii) Trace the change in the polarisation angle associated with Faraday rotation in the direction of W44 with rotation measure -404 +/- 49 rad/m2. And iii) set upper limits on the polarisation of W43 of Pi_AME <0.39 per cent (95 per cent C.L.) from QUIJOTE 17~GHz, and <0.22 per cent from WMAP 41 GHz data, which are the most stringent constraints ever obtained on the polarisation fraction of the AME. For typical physical conditions (grain temperature and magnetic field strengths), and in the case of perfect alignment between the grains and the magnetic field, the models of electric or magnetic dipole emissions predict higher polarisation fractions.Comment: Accepted for publication in MNRA

    Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Get PDF
    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
    corecore