702 research outputs found

    Integration of plastids with their hosts: Lessons learned from dinoflagellates.

    Get PDF
    After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.142138011

    Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    Get PDF
    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.This work was supported by a BBSRC doctoral training grant [BB/F017464/1, to RGD], and a British Phycological Society summer undergraduate studentship [to GAH].This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s11103-015-0408-

    Surfactant-aided exfoliation of molydenum disulphide for ultrafast pulse generation through edge-state saturable absorption

    Full text link
    We use liquid phase exfoliation to produce dispersions of molybdenum disulphide (MoS2) nanoflakes in aqueous surfactant solutions. The chemical structures of the bile salt surfactants play a crucial role in the exfoliation and stabilization of MoS2. The resultant MoS2 dispersions are heavily enriched in single and few (<6) layer flakes with large edge to surface area ratio. We use the dispersions to fabricate free-standing polymer composite wide-band saturable absorbers to develop mode-locked and Q- switched fibre lasers, tunable from 1535-1565 and 1030-1070 nm, respectively. We attribute this sub-bandgap optical absorption and its nonlinear saturation behaviour to edge-mediated states introduced within the material band-gap of the exfoliated MoS2 nanoflakes.Comment: 6 pages, 5 figure

    Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    Get PDF
    Chloroplasts contain their own genomes, containing two broad functional types of gene: genes encoding proteins directly involved in photosynthesis, and genes with a non-photosynthesis function, such as cofactor biosynthesis, assembly of protein complexes, or expression of the chloroplast genome. Thus far, to our knowledge, no chloroplast gene expression pathways in any lineage have been found to target one functional category of gene specifically. Here, we show that a chloroplast RNA processing pathway – the addition of a 3′ poly(U) tail – is specifically associated with photosynthesis genes in two species of algae, the ‘chromerids’ Chromera and Vitrella. The addition of the poly(U) tail enables the precise processing of mature photosynthesis gene transcripts from precursor RNA, and is likely to be essential for expression of the chromerid photosynthesis machinery. The chromerid algae are the closest photosynthetic relatives of a parasitic group of eukaryotes, the apicomplexans, which include the malaria pathogen Plasmodium. Apicomplexans are descended from algae, and retain a reduced chloroplast, which contains genes only of non-photosynthesis function. We have confirmed that 3′ poly(U) tails are not added to Plasmodium chloroplast transcripts. The expression pathways associated with photosynthesis genes have therefore been lost in the evolution of the apicomplexan chloroplast, and this loss could potentially have driven the transition from photosynthesis to parasitism

    Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid.

    Get PDF
    The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.CNRS Investissements de l'avenir programme Gordon and Betty Moore Foundatio

    Socioeconomic differences in childhood length/height trajectories in a middle-income country: a cohort study:a cohort study

    Get PDF
    Published: 8 September 2014Socioeconomic disadvantage is associated with shorter adult stature. Few studies have examined socioeconomic differences in stature from birth to childhood and the mechanisms involved, particularly in middle-income former Soviet settings.The sample included 12,463 Belarusian children (73% of the original cohort) born in 1996-1997, with up to 14 stature measurements from birth to 7 years. Linear spline multi-level models with 3 knots at 3, 12 and 34 months were used to analyse birth length and growth velocity during four age-periods by parental educational achievement (up to secondary school, advanced secondary/partial university, completed university) and occupation (manual, non-manual).Girls born to the most (versus least) educated mothers were 0.43 cm (95% confidence interval (CI): 0.28, 0.58) longer at birth; for boys, the corresponding difference was 0.30 cm (95% CI: 0.15, 0.46). Similarly, children of the most educated mothers grew faster from birth-3 months and 12-34 months (p-values for trend ≤ 0.08), such that, by age 7 years, girls with the most (versus least) educated mothers were 1.92 cm (95% CI: 1.47, 2.36) taller; after controlling for urban/rural and East/West area of residence, this difference remained at 1.86 cm (95% CI: 1.42, 2.31), but after additionally controlling for mid-parental height, attenuated to 1.10 cm (95% CI: 0.69, 1.52). Among boys, these differences were 1.95 cm (95% CI: 1.53, 2.37), 1.89 cm (95% CI: 1.47, 2.31) and 1.16 cm (95% CI: 0.77, 1.55), respectively. Additionally controlling for breastfeeding, maternal smoking and older siblings did not substantively alter these findings. There was no evidence that the association of maternal educational attainment with growth differed in girls compared to boys (p for interaction = 0.45). Results were similar for those born to the most (versus least) educated fathers, or who had a parent with a non-manual (versus manual) occupation.In Belarus, a middle-income former Soviet country, socioeconomic differences in offspring growth commence in the pre-natal period and generate up to approximately 2 cm difference in height at age 7 years. These associations are partly explained by genetic or other factors influencing parental stature.Current Controlled Trials: NCT01352247 assigned 9 Sept 2005; ClinicalTrials.gov. Identifier: NCT01561612 received 20 Mar 2012.Rita Patel, Kate Tilling, Debbie A Lawlor, Laura D Howe, Natalia Bogdanovich, Lidia Matush, Emily Nicoli, Michael S Kramer and Richard M Marti

    Falcon Neuro: an event-based sensor on the International Space Station

    Full text link
    We report on the Falcon neuro event-based sensor (EBS) instrument that is designed to acquire data from lightning and sprite phenomena and is currently operating on the International Space Station. The instrument consists of two independent, identical EBS cameras pointing in two fixed directions, toward the nominal forward direction of flight and toward the nominal Nadir direction. The payload employs stock DAVIS 240C focal plane arrays along with custom-built control and readout electronics to remotely interface with the cameras. To predict the sensor’s ability to effectively record sprites and lightning, we explore temporal response characteristics of the DAVIS 240C and use lab measurements along with reported limitations to model the expected response to a characteristic sprite illumination time-series. These simulations indicate that with appropriate camera settings the instrument will be capable of capturing these transient luminous events when they occur. Finally, we include initial results from the instrument, representing the first reported EBS recordings successfully collected aboard a space-based platform and demonstrating proof of concept that a neuromorphic camera is capable of operating in the space environment

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning
    corecore