378 research outputs found

    Improved astrometry for the Bohannan & Epps catalogue

    Full text link
    Aims: Accurate astrometry is required to reliably cross-match 20th-century catalogues against 21st-century surveys. The present work aims to provide such astrometry for the 625 entries of the Bohannan & Epps (BE74) catalogue of Hα\alpha emission-line stars. Methods: BE74 targets have been individually identified in digital images and, in most cases, unambiguously matched to entries in the UCAC4 astrometric catalogue. Results: Sub-arcsecond astrometry is now available for almost all BE74 stars. Several identification errors in the literature illustrate the perils of relying solely on positional coincidences using poorer-quality astrometry.Comment: 3 pages, 1 figure. Accepted in A&

    Emission-line stars in the LMC: the Armagh survey, and a metacatalogue

    Full text link
    [Aims] Accurate astrometry is required to reliably cross-match 20th-century photographic catalogues against 21st-century digital surveys. The present work provides modern-era identifications and astrometry for the 801 emission-line objects "of stellar appearance" in the Armagh survey (the largest of its nature to date). [Methods] Targets have been individually identified in digital images using the Armagh Atlas and, in most cases, unambiguously matched to entries in the UCAC astrometric catalogues. [Results] Astrometry with sub-arcsecond precision is now available for all the major photographic spectroscopic surveys of the LMC. The results are used to compile an annotated metacatalogue of 1675 individual, spectroscopically identified candidate H-alpha-emission stars, including detailed cross-matching between catalogues, and resolving many (though not all) identification ambiguities in individual primary sources

    A reappraisal of parameters for the putative planet PTFO 8-8695b and its potentially precessing parent star

    Get PDF
    Published photometry of fading events in the PTFO 8-8695 system is modelled using improved treatments of stellar geometry, surface intensities, and, particularly, gravity darkening, with a view to testing the planetary-transit hypothesis. Variability in the morphology of fading events can be reproduced by adopting convective-envelope gravity darkening, but near-critical stellar rotation is required. This leads to inconsistencies with spectroscopic observations; the model also predicts substantial photometric variability associated with stellar precession, contrary to observations. Furthermore, the empirical ratio of orbital to rotational angular momenta is at odds with physically plausible values. An exoplanet transiting a precessing, gravity-darkened star may not be the correct explanation of periodic fading events in this system

    Rapid rotators revisited: absolute dimensions of KOI-13

    Get PDF
    We analyse Kepler light-curves of the exoplanet KOI-13b transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ca. 10 parts per million level. We demonstrate that this Roche-model solution allows the absolute dimensions of the system to be determined from the star's projected equatorial rotation speed, v(e)sin(i), without any additional assumptions; we find a planetary radius 1.33+/-0.05 R(Jup), stellar polar radius 1.55+/-0.06 R(sun), combined mass M(*) + M(P) (\simeq M*) = 1.47 +/- 0.17 M(sun), and distance d \simeq 370+/-25 pc, where the errors are dominated by uncertainties in relative flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period is within ca. 5% of the non-orbital, 25.43-hr signal found in the Kepler photometry. We show that the model accurately reproduces independent tomographic observations, and yields an offset between orbital and stellar-rotation angular-momentum vectors of 60.25+/-0.05 degrees.Comment: Accepted in MNRA

    High-precision stellar limb-darkening in exoplanetary transits

    Get PDF
    Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision ≲\lesssim100 parts per million (ppm). Next-generation instruments onboard the James Webb Space Telescope (JWST) are expected to achieve ∼\sim10 ppm precision for several tens of targets. A similar precision can be obtained in modelling only if other astrophysical effects, including the stellar limb-darkening, are accounted for properly. In this paper, we explore the limits on precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and to the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We propose a new limb-darkening law with two coefficients, `power-2', which outperforms other two-coefficient laws adopted in the literature in most cases, and particularly for cool stars. Empirical limb-darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficients limb-darkening in the visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that otherwise would prevent the convergence of the fit. Infrared observations taken with the James Webb Space Telescope (JWST) will provide accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from observations in the visible, such as those taken with Kepler/K2, JWST, other past and future instruments

    A detailed X-ray investigation of zeta Puppis IV. Further characterization of the variability

    Get PDF
    Previously, the X-ray emission of zeta Puppis was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length. The origin of these changes was proposed to be linked to large-scale structures in the wind, but further characterization of the variability at high energies was needed. Since then, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. We analysed these new X-ray data, revisited the old data, and compared X-ray with optical data, including when simultaneous. We found that the behaviour in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, zeta Puppis was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78d, although the simultaneous optical behaviour is unknown. The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.Comment: accepted for publication by A&

    Time-series photometry of the O4 I(n)fp star zeta Puppis

    Full text link
    We report a time-series analysis of the O4 I(n)fp star zeta Pup, based on optical photometry obtained with the SMEI instrument on the Coriolis satellite, 2003--2006. A single astrophysical signal is found, with P = (1.780938 \pm 0.000093) d and a mean semi-amplitude of (6.9 \pm 0.3) mmag. There is no evidence for persistent coherent signals with semi-amplitudes in excess of ca. 2~mmag on any of the timescales previously reported in the literature. In particular, there is no evidence for a signature of the proposed rotation period, ca. 5.1~days; zeta Pup is therefore probably not an oblique magnetic rotator. The 1.8-day signal varies in amplitude by a factor ca. 2 on timescales of 10--100d (and probably by more on longer timescales), and exhibits modest excursions in phase, but there is no evidence for systematic changes in period over the 1000-d span of our observations. Rotational modulation and stellar-wind variability appear to be unlikely candidates for the underlying mechanism; we suggest that the physical origin of the signal may be pulsation associated with low-l oscillatory convection modes.Comment: MNRAS, in pres
    • …
    corecore