11 research outputs found

    Blending Hippo and WNT: Sharing Messengers and Regulation

    Get PDF
    Two new studies reveal ways in which the Wnt pathway commandeers Hippo components for signaling. Azzolin et al. show how the Hippo transcription factor TAZ mediates Wnt signals, and Rosenbluh et al. show how β-catenin and YAP1 form a kinase-regulated complex with transcription factor TBX5

    The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition.

    No full text
    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions

    Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells

    No full text
    The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways

    A unique DNA binding domain converts T-cell factors into strong Wnt effectors.

    No full text
    Wnt regulation of gene expression requires binding of LEF/T-cell factor (LEF/TCF) transcription factors to Wnt response elements (WREs) and recruitment of the activator beta-catenin. There are significant differences in the abilities of LEF/TCF family members to regulate Wnt target genes. For example, alternatively spliced isoforms of TCF-1 and TCF-4 with a C-terminal "E" tail are uniquely potent in their activation of LEF1 and CDX1. Here we report that the mechanism responsible for this unique activity is an auxiliary 30-amino-acid DNA interaction motif referred to here as the "cysteine clamp" (or C-clamp). The C-clamp contains invariant cysteine, aromatic, and basic residues, and surface plasmon resonance (SPR) studies with recombinant C-clamp protein showed that it binds double-stranded DNA but not single-stranded DNA or RNA (equilibrium dissociation constant = 16 nM). CASTing (Cyclic Amplification and Selection of Targets) experiments were used to test whether this motif influences WRE recognition. Full-length LEF-1, TCF-1E, and TCF-1E with a mutated C-clamp all bind nearly identical WREs (TYYCTTTGATSTT), showing that the C-clamp does not alter WRE specificity. However, a GC element downstream of the WRE (RCCG) is enriched in wild-type TCF-1E binding sites but not in mutant TCF-1E binding sites. We conclude that the C-clamp is a sequence-specific DNA binding motif. C-clamp mutations destroy the ability of beta-catenin to regulate the LEF1 promoter, and they severely impair the ability of TCF-1 to regulate growth in colon cancer cells. Thus, E-tail isoforms of TCFs utilize two DNA binding activities to access a subset of Wnt targets important for cell growth

    Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer

    No full text
    Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt-driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients
    corecore