320 research outputs found
Recommended from our members
Validation of 1-D transport and sawtooth models for ITER
In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles
Recommended from our members
Stability in High Gain Plasmas in DIII-D
Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015, which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields
Recommended from our members
WHIST transport analysis of high neutron production, ICRH heated, pellet fueled jet plasmas
The WHIST 1-1/2-D predictive transport code is used to model the particle and energy transport of JET pellet-fueled, ICRH-heated plasmas. Pellet injection during the current rise phase was used to produce strong central peaking of the particle density followed by central ICRH heating and led to transient period of enhanced confinement. The evolution of the density profile as well as the electron and ion temperature profiles and strong ICRH heating conditions are examined during this period of enhanced confinement in the context of models for particle and energy transport. Because WHIST is a predictive transport code, it requires models for particle and energy sources and transport coefficients. The analysis procedure thus consists of modeling the particle source terms (pellets, gas, and recycled neutrals), energy source terms (ohmic and ICRH heating), and energy loss terms (primarily radiation), and varying the transport models until the best qualitative and quantitative agreement is obtained between calculated and observed quantities. We find that plasma behavior is well described during the first second of ICRH heating following pellet injection by the same transport coefficients that describe the ohmic plasma. The distinction between electron and ion thermal losses depends on the relative heating rates of electrons and ions as determined by the ICRH model, as well as the radiation losses. 10 refs., 4 figs
Recommended from our members
A survey of problems in divertor and edge plasma theory
Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Integrated predictive modelling of JET H-mode plasma with type-I ELMs
It is well known that edge plasma parameters influence performance in many different ways (profile stiffness is probably one of the best known examples). In ELMy H-mode a thin region with improved transport characteristics (Edge Transport Barrier) c
- …