214 research outputs found

    On the detection of functionally coherent groups of protein domains with an extension to protein annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation.</p> <p>Results</p> <p>Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast <it>Saccharomyces cerevisiae</it>. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition.</p> <p>Conclusion</p> <p>A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of <it>Saccharomyces cerevisiae</it>. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins.</p

    ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine

    Get PDF
    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. In silico models for predicting the percentage of HIA based on calculated molecular descriptors are highly needed for the rapid estimation of this property. Here, we have studied the performance of a support vector machine (SVM) to classify compounds with high or low fractional absorption (%FA > 30% or %FA ā‰¤ 30%). The analyzed data set consists of 578 structural diverse druglike molecules, which have been divided into a 480-molecule training set and a 98-molecule test set. Ten SVM classification models have been generated to investigate the impact of different individual molecular properties on %FA. Among these studied important molecule descriptors, topological polar surface area (TPSA) and predicted apparent octanolāˆ’water distribution coefficient at pH 6.5 (logD_(6.5)) show better classification performance than the others. To obtain the best SVM classifier, the influences of different kernel functions and different combinations of molecular descriptors were investigated using a rigorous training-validation procedure. The best SVM classifier can give satisfactory predictions for the training set (97.8% for the poor-absorption class and 94.5% for the good-absorption class). Moreover, 100% of the poor-absorption class and 97.8% of the good-absorption class in the external test set could be correctly classified. Finally, the influence of the size of the training set and the unbalanced nature of the data set have been studied. The analysis demonstrates that large data set is necessary for the stability of the classification models. Furthermore, the weights for the poor-absorption class and the good-absorption class should be properly balanced to generate unbiased classification models. Our work illustrates that SVMs used in combination with simple molecular descriptors can provide an extremely reliable assessment of intestinal absorption in an early in silico filtering process

    Sample-efficient Multi-objective Molecular Optimization with GFlowNets

    Full text link
    Many crucial scientific problems involve designing novel molecules with desired properties, which can be formulated as a black-box optimization problem over the discrete chemical space. In practice, multiple conflicting objectives and costly evaluations (e.g., wet-lab experiments) make the diversity of candidates paramount. Computational methods have achieved initial success but still struggle with considering diversity in both objective and search space. To fill this gap, we propose a multi-objective Bayesian optimization (MOBO) algorithm leveraging the hypernetwork-based GFlowNets (HN-GFN) as an acquisition function optimizer, with the purpose of sampling a diverse batch of candidate molecular graphs from an approximate Pareto front. Using a single preference-conditioned hypernetwork, HN-GFN learns to explore various trade-offs between objectives. We further propose a hindsight-like off-policy strategy to share high-performing molecules among different preferences in order to speed up learning for HN-GFN. We empirically illustrate that HN-GFN has adequate capacity to generalize over preferences. Moreover, experiments in various real-world MOBO settings demonstrate that our framework predominantly outperforms existing methods in terms of candidate quality and sample efficiency. The code is available at https://github.com/violet-sto/HN-GFN.Comment: NeurIPS 202

    Generative AI for Controllable Protein Sequence Design: A Survey

    Full text link
    The design of novel protein sequences with targeted functionalities underpins a central theme in protein engineering, impacting diverse fields such as drug discovery and enzymatic engineering. However, navigating this vast combinatorial search space remains a severe challenge due to time and financial constraints. This scenario is rapidly evolving as the transformative advancements in AI, particularly in the realm of generative models and optimization algorithms, have been propelling the protein design field towards an unprecedented revolution. In this survey, we systematically review recent advances in generative AI for controllable protein sequence design. To set the stage, we first outline the foundational tasks in protein sequence design in terms of the constraints involved and present key generative models and optimization algorithms. We then offer in-depth reviews of each design task and discuss the pertinent applications. Finally, we identify the unresolved challenges and highlight research opportunities that merit deeper exploration.Comment: 9 page

    Computational Analysis and Prediction of the Binding Motif and Protein Interacting Partners of the Abl SH3 Domain

    Get PDF
    Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well

    Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment

    Get PDF
    The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe. Ā© 2011 Elsevier Ltd. All rights reserved

    Recent Development and Application of Virtual Screening in Drug Discovery: An Overview

    No full text
    • ā€¦
    corecore