37 research outputs found

    ハクトウオウの化学成分(第1報) Hederagonic Acidの同定並びに立体配座について

    Get PDF
    From the roots of Pulsatilla chinensis (BUNGE) REGEL (Ranunculaceae),hederagonic acid (1) was isolated and identified on the basis of spectral data.Compound 1 has been isolated from the roots of this plant for the first time.Some correlations in the HMBC and NOESY spectra of compound 1 suggested the existence of a conformational equilibrium on the C23-hydroxyl group

    AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication

    Get PDF
    Autism susceptibility candidate 2 (AUTS2), a risk gene for autism spectrum disorders (ASDs), is implicated in telencephalon development. Because AUTS2 is also expressed in the cerebellum where defects have been linked to ASDs, we investigated AUTS2 functions in the cerebellum. AUTS2 is specifically localized in Purkinje cells (PCs) and Golgi cells during postnatal development. Auts2 conditional knockout (cKO) mice exhibited smaller and deformed cerebella containing immature-shaped PCs with reduced expression of Cacna1a. Auts2 cKO and knock-down experiments implicated AUTS2 participation in elimination and translocation of climbing fiber synapses and restriction of parallel fiber synapse numbers. Auts2 cKO mice exhibited behavioral impairments in motor learning and vocal communications. Because Cacna1a is known to regulate synapse development in PCs, it suggests that AUTS2 is required for PC maturation to elicit normal development of PC synapses and thus the impairment of AUTS2 may cause cerebellar dysfunction related to psychiatric illnesses such as ASDs

    Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material

    No full text
    Therapy with clinical nerve guidance conduits often causes functional incompleteness in patients. With the aim of better therapeutic efficacy, nerve regeneration and gait function were investigated in this study using a novel nerve guidance conduit consisting of glucose/mannose. The glucose/mannose nerve guidance conduits were prepared by filling the conduits with the glucose/mannose aqueous solutions for different kinematic viscosity, which were applied to sciatic nerve defects (6 mm gap) in a rat model. The nerve regeneration effect and the gait function recovery with the fabricated nerve guidance conduits were examined. From the results of the XRD measurement, the glucose/mannose conduits were identified as crystal structures of cellulose type II. Young’s modulus and the maximum tensile strength of the crystalline glucose/mannose conduits demonstrated good strength and softness for the human nerve. Above 4 weeks postoperative, macroscopic observation revealed that the nerve was regenerated in the defective area. In various staining results of the nerve tissue removed at 4 weeks postoperative, myelinated nerves contributing to gait function could not be observed in the proximal and distal sites to the central nerve. At 8–12 weeks postoperative, myelinated nerves were found at the proximal and distal sites in hematoxylin/eosin staining. Glia cells were confirmed by phosphotungstic acid–hematoxylin staining. Continuous nerve fibers were observed clearly in the sections of the regenerated nerves towards the longitudinal direction at 12 weeks postoperative. The angle between the metatarsophalangeal joint and the ground plane was approximately 93° in intact rats. At 4 weeks postoperative, walking was not possible, but at 8 weeks postoperative, the rats were able to walk, with an angle of 53°. At 12 weeks postoperative, the angle increased further, reaching 65°, confirming that the rats were able to walk more quickly than at 8 weeks postoperative. These results demonstrated that gait function in rats treated with glucose/mannose nerve guidance conduits was rapidly recovered after 8 weeks postoperative. The glucose/mannose nerve guidance conduit could be applied as a new promising candidate material for peripheral nerve regeneration

    Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory.

    No full text
    Mutations in the Autism susceptibility candidate 2 gene (AUTS2) have been associated with a broad range of psychiatric illnesses including autism spectrum disorders, intellectual disability and schizophrenia. We previously demonstrated that the cytoplasmic AUTS2 acts as an upstream factor for the Rho family small GTPase Rac1 and Cdc42 that regulate the cytoskeletal rearrangements in neural cells. Moreover, genetic ablation of the Auts2 gene in mice has resulted in defects in neuronal migration and neuritogenesis in the developing cerebral cortex caused by inactivation of Rac1-signaling pathway, suggesting that AUTS2 is required for neural development. In this study, we conducted a battery of behavioral analyses on Auts2 heterozygous mutant mice to examine the involvement of Auts2 in adult cognitive brain functions. Auts2-deficient mice displayed a decrease in exploratory behavior as well as lower anxiety-like behaviors in the absence of any motor dysfunction. Furthermore, the capability for novel object recognition and cued associative memory were impaired in Auts2 mutant mice. Social behavior and sensory motor gating functions were, however, normal in the mutant mice as assessed by the three-chamber test and prepulse inhibition test, respectively. Together, our findings indicate that AUTS2 is critical for the acquisition of neurocognitive function

    An Optimized Preparation Method for Long ssDNA Donors to Facilitate Quick Knock-In Mouse Generation

    No full text
    Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5′-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research

    Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis

    Get PDF
    Mutations in the Autism susceptibility candidate 2 gene (AUTS2), whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations
    corecore